Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 174 Accesses

Abstract

XAS represents a powerful technique for probing the oxidation state and coordination sphere of Au-containing species in solution. In addition, in the context of the interaction of metallodrugs with a metalloprotein, XAS can be used in a “dual-probe” approach, by monitoring both the absorption edge of the metal complex and also the edge of the metal present in the metalloprotein. As a proof-of-concept, we evaluated the interaction of Au(III) complexes with ZnFs by monitoring the Au L3-edge and also the Zn K-edge. Furthermore, given the unique stability and reactivity of the Au(C^N) coordination motif discussed in Part II—Chap. 5, the interaction of the compound [Au(bnpy)Cl2] with ZnFs was also studied by XAS.

Parts of this chapter has been reproduced with permission from ACS. https://pubs.acs.org/doi/10.1021/acs.inorgchem.7b02406.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berners-Price, S.J., Filipovska, A.: Gold compounds as therapeutic agents for human diseases. Metallomics 3(9), 863 (2011). https://doi.org/10.1039/c1mt00062d

    Article  CAS  PubMed  Google Scholar 

  2. Milacic, V., Chen, D., Ronconi, L., Landis-Piwowar, K.R., Fregona, D., Dou, Q.P.: A Novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Res. 66(21), 10478–10486 (2006). https://doi.org/10.1158/0008-5472.CAN-06-3017

    Article  CAS  PubMed  Google Scholar 

  3. Ronconi, L., Giovagnini, L., Marzano, C., Bettìo, F., Graziani, R., Pilloni, G., Fregona, D.: Gold dithiocarbamate derivatives as potential antineoplastic agents: Design, spectroscopic properties, and in vitro antitumor activity. Inorg. Chem. 44(6), 1867–1881 (2005). https://doi.org/10.1021/ic048260v

    Article  CAS  PubMed  Google Scholar 

  4. Che, C.-M., Sun, R.W.-Y., Yu, W.-Y., Ko, C.-B., Zhu, N., Sun, H.: Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem. Commun. (14), 1718–1719 (2003) https://doi.org/10.1039/b303294a

  5. Jacques, A., Lebrun, C., Casini, A., Kieffer, I., Proux, O., Latour, J.-M., Sénèque, O.: Reactivity of Cys 4 zinc finger domains with gold(III) complexes: insights into the formation of “gold fingers”. Inorg. Chem. 54(8), 4104–4113 (2015). https://doi.org/10.1021/acs.inorgchem.5b00360

    Article  CAS  PubMed  Google Scholar 

  6. de Paula, Q. A., Liu, Q., Almaraz, E., Denny, J.A., Mangrum, J.B., Bhuvanesh, N., Darensbourg, M.Y., Farrell, N.P.: Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass spectrometry and X-ray diffraction: molecular identification of [Pd(bme-dach)], [Au(bme-dach)]+ and [ZnCl(bme-dach)]2Pd. Dalton Trans. (48), 10896–10903 (2009) https://doi.org/10.1039/b917748p

  7. Spell, S.R., Farrell, N.P.: Synthesis and properties of the first [Au(dien)(N-heterocycle)] 3+ compounds. Inorg. Chem. 53(1), 30–32 (2014). https://doi.org/10.1021/ic402772j

    Article  CAS  PubMed  Google Scholar 

  8. Spell, S.R., Farrell, N.P.: [Au(dien)(N-heterocycle)] 3+ : reactivity with biomolecules and zinc finger peptides. Inorg. Chem. 54(1), 79–86 (2015). https://doi.org/10.1021/ic501784n

    Article  CAS  PubMed  Google Scholar 

  9. Cinellu, M.A., Zucca, A., Stoccoro, S., Minghetti, G., Manassero, M., Sansoni, M.: Synthesis and characterization of gold(III) adducts and cyclometallated derivatives with 2-substituted pyridines. Crystal structure of [Au{NC5H4(CMe2C6H4)-2}Cl2]. J. Chem. Soc. Dalt. Trans. (17), 2865–2872 (1995) https://doi.org/10.1039/dt9950002865

  10. Casini, A., Diawara, M.C., Scopelliti, R., Zakeeruddin, S.M., Grätzel, M., Dyson, P.J., Abbott, B.J., Mayo, J.G., Shoemaker, R.H., Boyd, M.R.: Synthesis, characterisation and biological properties of gold(III) compounds with modified bipyridine and bipyridylamine ligands. Dalton Trans. 39(9), 2239 (2010). https://doi.org/10.1039/b921019a

    Article  CAS  PubMed  Google Scholar 

  11. Figueroa, S.J.A., Mauricio, J.C., Murari, J., Beniz, D.B., Piton, J.R., Slepicka, H.H., de Sousa, M.F., Espíndola, A.M., Levinsky, A.P.S.: Upgrades to the XAFS2 beamline control system and to the endstation at the LNLS. J. Phys: Conf. Ser. 712(1), 012022 (2016). https://doi.org/10.1088/1742-6596/712/1/012022

    Article  CAS  Google Scholar 

  12. Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005). https://doi.org/10.1107/S0909049505012719

    Article  CAS  PubMed  Google Scholar 

  13. Tolentino, H.C.N., Ramos, A.Y., Alves, M.C.M., Barrea, R.A., Tamura, E., Cezar, J.C., Watanabe, N.: A, 2.3 to 25 keV XAS beamline at LNLS. J. Synchrotron Radiat. 8(3), 1040–1046 (2001). https://doi.org/10.1107/S0909049501005143

    Article  CAS  PubMed  Google Scholar 

  14. Neese, F.: The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(1), 73–78 (2012). https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  15. Weigend, F., Ahlrichs, R., Peterson, K.A., Dunning, T.H., Pitzer, R.M., Bergner, A.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297 (2005). https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  16. Petrenko, T., Kossmann, S., Neese, F.: Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. J. Chem. Phys. 134(5), 054116 (2011). https://doi.org/10.1063/1.3533441

    Article  CAS  PubMed  Google Scholar 

  17. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  18. Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996). https://doi.org/10.1063/1.472933

    Article  CAS  Google Scholar 

  19. Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110(13), 6158–6170 (1999). https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  20. Hess, B.A.: Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A 32(2), 756–763 (1985). https://doi.org/10.1103/PhysRevA.32.756

    Article  CAS  Google Scholar 

  21. Hess, B.A.: Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33(6), 3742–3748 (1986). https://doi.org/10.1103/PhysRevA.33.3742

    Article  CAS  Google Scholar 

  22. Jansen, G., Hess, B.A.: Revision of the Douglas-Kroll transformation. Phys. Rev. A 39(11), 6016–6017 (1989). https://doi.org/10.1103/PhysRevA.39.6016

    Article  CAS  Google Scholar 

  23. Pantazis, D.A., Chen, X.-Y., Landis, C.R., Neese, F.: All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4(6), 908–919 (2008). https://doi.org/10.1021/ct800047t

    Article  CAS  PubMed  Google Scholar 

  24. Izsák, R., Neese, F.: An overlap fitted chain of spheres exchange method. J. Chem. Phys. 135(14), 144105 (2011). https://doi.org/10.1063/1.3646921

    Article  CAS  PubMed  Google Scholar 

  25. Neese, F., Wennmohs, F., Hansen, A., Becker, U.: Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356(1), 98–109 (2009). https://doi.org/10.1016/j.chemphys.2008.10.036

    Article  CAS  Google Scholar 

  26. Messori, L., Balerna, A., Ascone, I., Castellano, C., Gabbiani, C., Casini, A., Marchioni, C., Jaouen, G., Congiu Castellano, A.: X-ray absorption spectroscopy studies of the adducts formed between cytotoxic gold compounds and two major serum proteins. JBIC, J. Biol. Inorg. Chem. 16(3), 491–499 (2011). https://doi.org/10.1007/s00775-010-0748-5

    Article  CAS  PubMed  Google Scholar 

  27. Gabbiani, C., Massai, L., Scaletti, F., Michelucci, E., Maiore, L., Cinellu, M.A., Messori, L.: Protein metalation by metal-based drugs: reactions of cytotoxic gold compounds with cytochrome c and lysozyme. JBIC, J. Biol. Inorg. Chem. 17(8), 1293–1302 (2012). https://doi.org/10.1007/s00775-012-0952-6

    Article  CAS  PubMed  Google Scholar 

  28. Garg, D., Torbett, B.E.: Advances in targeting nucleocapsid–nucleic acid interactions in HIV-1 therapy. Virus Res. 193, 135–143 (2014). https://doi.org/10.1016/j.virusres.2014.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spell, S.R., Mangrum, J.B., Peterson, E.J., Fabris, D., Ptak, R., Farrell, N.P.: Au(<scp> iii </scp>) compounds as HIV nucleocapsid protein (NCp7)–nucleic acid antagonists. Chem. Commun. 53(1), 91–94 (2017). https://doi.org/10.1039/C6CC07970A

    Article  CAS  Google Scholar 

  30. Đurović, M.D., Bugarčić, Ž.D., Heinemann, F.W., van Eldik, R.: Substitution versus redox reactions of gold(III) complexes with L-cysteine, L-methionine and glutathione. Dalton Trans. 43(10), 3911–3921 (2014). https://doi.org/10.1039/c3dt53140f

    Article  CAS  PubMed  Google Scholar 

  31. Djeković, A., Petrović, B., Bugarčić, Ž.D., Puchta, R., van Eldik, R.: Kinetics and mechanism of the reactions of Au(III) complexes with some biologically relevant molecules. Dalton Trans. 41(13), 3633–3641 (2012). https://doi.org/10.1039/c2dt11843b

    Article  CAS  PubMed  Google Scholar 

  32. Summers, M.F., Henderson, L.E., Chance, M.R., South, T.L., Blake, P.R., Perez-Alvarado, G., Bess, J.W., Sowder, R.C., Arthur, L.O., Sagi, I., et al.: Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci. 1(5), 563–574 (1992). https://doi.org/10.1002/pro.5560010502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giachini, L., Veronesi, G., Francia, F., Venturoli, G., Boscherini, F.: Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. J. Synchrotron Radiat. 17(1), 41–52 (2010) https://doi.org/10.1107/s090904950904919x

    Article  PubMed  Google Scholar 

  34. Mijovilovich, A., Meyer-Klaucke, W.: Simulating the XANES of metalloenzymes ? A case study. J. Synchrotron Radiat. 10(1), 64–68 (2003) https://doi.org/10.1107/s0909049502017296

    Article  PubMed  Google Scholar 

  35. Laskay, Ü.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A., Laskay, U.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A.: Gold finger formation studied by high-resolution mass spectrometry and in silico methods. Chem. Commun. 51(9), 1612–1615 (2015). https://doi.org/10.1039/C4CC07490D

    Article  CAS  Google Scholar 

  36. Chang, S.-Y., Uehara, A., Booth, S.G., Ignatyev, K., Mosselmans, J.F.W., Dryfe, R.A.W., Schroeder, S.L.M.: Structure and bonding in Au(I) chloride species: a critical examination of X-ray absorption spectroscopy (XAS) data. RSC Adv. 5(9), 6912–6918 (2015). https://doi.org/10.1039/C4RA13087A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Enoque Ferraz de Paiva .

Appendix

Appendix

1.1 XAS of Au(III) Model Compounds and TD-DFT Calculations

The spectra in Fig. 6.1 show distinguishing features in the white line region, which originate from dipole-allowed 2p3/2 → 5d transitions, containing both metal-centered 5d3/2 and 5d5/2 final states (Fig. 6.6).

Fig. 6.6
figure 6

Gold L3 XANES spectra of the Au(III) complexes evaluated here. The spectrum obtained for a Au(0) foil is also shown and the vertical line indicates its edge position (19,919 eV)

The Au(III) compounds ([5d86 s0] electronic configuration) have white line peaks with high intensity (Fig. 6.6) in comparison to the Au(I) model compounds discussed earlier (Part I—Chap. 3, Fig. 3.5), as consequence of empty d orbitals promoting the allowed 2p3/2 → 5d transitions in the L3-edge XAS. In principle, the intensity of the white line can be used as a fingerprint of the d-electron count in these cases; however, in some cases the standard relationships between experimental Au L3-edge white line intensities and oxidation state does not hold [36]. The XANES spectrum of compound [AuCl4] contains a sharp peak in the white line region and presents a distinct XANES spectrum when compared to compounds II-5 and II-6, [AuCl(dien)]2+ and [Au(dien)(dmap)]3+, respectively. Compounds II-5 and II-6 have their white line maxima shifted by 0.8 and 1.0 eV respectively, in comparison to compound [AuCl4], indicating that the dien ligand has an oxidizing effect on the Au center (higher count of d holes on Au). That suggests a higher stability of the Au(III) species bound to chelating N- donor ligands, which directly translates into higher stability under biological reducing media. Point symmetry also contributes to the intensity of the white line in the gold L3 XAS. When coordinated, dien leads to non-centrosymmetric groups. The p-d hybridization is enhanced reducing the effective d electron count in gold, thus increasing the intensity of the white line (Fig. 6.7 and Table 6.1).

Fig. 6.7
figure 7

a Experimental Au L3-edge spectra Au(III) compounds II-5 and II-6 in comparison to [AuCl4]. b TD-DFT-calculated Au L3-edge spectra, shifted by 465 eV to lower energies. The DFT-optimized structures of teh experimental model compounds are also shown (bottom)

1.2 EXAFS

See Figs. 6.8, 6.9, 6.10 and 6.11.

Fig. 6.8
figure 8

Comparison of the k2-weighted EXAFS of model compound [Au(N-Ac-Cys)] (M-5), with coordination sphere S-Au-S, compound [AuCl(dien)]2+ (II-5) and the reaction product II-5+NCp7

Fig. 6.9
figure 9

a The AuF obtained when interacting II-5+NCp7 is expected to have a similar S-Au-S coordination as observed for the compound [Au(N-Ac-Cys)] (M-5). b DFT-optimized structure of [Au(N-Ac-Cys)2], highlighting the Au-S distance of about 2.30 Å

Fig. 6.10
figure 10

Comparison of the k2-weighted EXAFS of model compound [Au(dien)(dmap)]3+ and the reaction products II-6+NCp7 and II-6+Sp1

Fig. 6.11
figure 11

Experimental Au L3-edge spectra of a II-5+Sp1 and II-6+Sp1 and c II-5+NCp7 and II-6+NCp7. The near-edge regions are shown in (b) and (d)

1.3 Mass Spectrometry

See Fig. 6.12.

Fig. 6.12
figure 12

Non-covalent adduct identified between compound II-6 ([Au(dien)(dmap)]3+ and the dinuclear full-length NCp7 ZnF

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferraz de Paiva, R.E. (2018). “Dual-Probe” X-Ray Absorption Spectroscopy. In: Gold(I,III) Complexes Designed for Selective Targeting and Inhibition of Zinc Finger Proteins. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00853-6_6

Download citation

Publish with us

Policies and ethics