Advertisement

“Dual-Probe” X-Ray Absorption Spectroscopy

  • Raphael Enoque Ferraz de PaivaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

XAS represents a powerful technique for probing the oxidation state and coordination sphere of Au-containing species in solution. In addition, in the context of the interaction of metallodrugs with a metalloprotein, XAS can be used in a “dual-probe” approach, by monitoring both the absorption edge of the metal complex and also the edge of the metal present in the metalloprotein. As a proof-of-concept, we evaluated the interaction of Au(III) complexes with ZnFs by monitoring the Au L3-edge and also the Zn K-edge. Furthermore, given the unique stability and reactivity of the Au(C^N) coordination motif discussed in Part II—Chap.  5, the interaction of the compound [Au(bnpy)Cl2] with ZnFs was also studied by XAS.

References

  1. 1.
    Berners-Price, S.J., Filipovska, A.: Gold compounds as therapeutic agents for human diseases. Metallomics 3(9), 863 (2011).  https://doi.org/10.1039/c1mt00062dCrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Milacic, V., Chen, D., Ronconi, L., Landis-Piwowar, K.R., Fregona, D., Dou, Q.P.: A Novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Res. 66(21), 10478–10486 (2006).  https://doi.org/10.1158/0008-5472.CAN-06-3017CrossRefPubMedGoogle Scholar
  3. 3.
    Ronconi, L., Giovagnini, L., Marzano, C., Bettìo, F., Graziani, R., Pilloni, G., Fregona, D.: Gold dithiocarbamate derivatives as potential antineoplastic agents: Design, spectroscopic properties, and in vitro antitumor activity. Inorg. Chem. 44(6), 1867–1881 (2005).  https://doi.org/10.1021/ic048260vCrossRefPubMedGoogle Scholar
  4. 4.
    Che, C.-M., Sun, R.W.-Y., Yu, W.-Y., Ko, C.-B., Zhu, N., Sun, H.: Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem. Commun. (14), 1718–1719 (2003)  https://doi.org/10.1039/b303294a
  5. 5.
    Jacques, A., Lebrun, C., Casini, A., Kieffer, I., Proux, O., Latour, J.-M., Sénèque, O.: Reactivity of Cys 4 zinc finger domains with gold(III) complexes: insights into the formation of “gold fingers”. Inorg. Chem. 54(8), 4104–4113 (2015).  https://doi.org/10.1021/acs.inorgchem.5b00360CrossRefGoogle Scholar
  6. 6.
    de Paula, Q. A., Liu, Q., Almaraz, E., Denny, J.A., Mangrum, J.B., Bhuvanesh, N., Darensbourg, M.Y., Farrell, N.P.: Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass spectrometry and X-ray diffraction: molecular identification of [Pd(bme-dach)], [Au(bme-dach)]+ and [ZnCl(bme-dach)]2Pd. Dalton Trans. (48), 10896–10903 (2009)  https://doi.org/10.1039/b917748p
  7. 7.
    Spell, S.R., Farrell, N.P.: Synthesis and properties of the first [Au(dien)(N-heterocycle)] 3+ compounds. Inorg. Chem. 53(1), 30–32 (2014).  https://doi.org/10.1021/ic402772jCrossRefGoogle Scholar
  8. 8.
    Spell, S.R., Farrell, N.P.: [Au(dien)(N-heterocycle)] 3+ : reactivity with biomolecules and zinc finger peptides. Inorg. Chem. 54(1), 79–86 (2015).  https://doi.org/10.1021/ic501784nCrossRefPubMedGoogle Scholar
  9. 9.
    Cinellu, M.A., Zucca, A., Stoccoro, S., Minghetti, G., Manassero, M., Sansoni, M.: Synthesis and characterization of gold(III) adducts and cyclometallated derivatives with 2-substituted pyridines. Crystal structure of [Au{NC5H4(CMe2C6H4)-2}Cl2]. J. Chem. Soc. Dalt. Trans. (17), 2865–2872 (1995)  https://doi.org/10.1039/dt9950002865
  10. 10.
    Casini, A., Diawara, M.C., Scopelliti, R., Zakeeruddin, S.M., Grätzel, M., Dyson, P.J., Abbott, B.J., Mayo, J.G., Shoemaker, R.H., Boyd, M.R.: Synthesis, characterisation and biological properties of gold(III) compounds with modified bipyridine and bipyridylamine ligands. Dalton Trans. 39(9), 2239 (2010).  https://doi.org/10.1039/b921019aCrossRefPubMedGoogle Scholar
  11. 11.
    Figueroa, S.J.A., Mauricio, J.C., Murari, J., Beniz, D.B., Piton, J.R., Slepicka, H.H., de Sousa, M.F., Espíndola, A.M., Levinsky, A.P.S.: Upgrades to the XAFS2 beamline control system and to the endstation at the LNLS. J. Phys: Conf. Ser. 712(1), 012022 (2016).  https://doi.org/10.1088/1742-6596/712/1/012022CrossRefGoogle Scholar
  12. 12.
    Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005).  https://doi.org/10.1107/S0909049505012719CrossRefPubMedGoogle Scholar
  13. 13.
    Tolentino, H.C.N., Ramos, A.Y., Alves, M.C.M., Barrea, R.A., Tamura, E., Cezar, J.C., Watanabe, N.: A, 2.3 to 25 keV XAS beamline at LNLS. J. Synchrotron Radiat. 8(3), 1040–1046 (2001).  https://doi.org/10.1107/S0909049501005143CrossRefPubMedGoogle Scholar
  14. 14.
    Neese, F.: The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(1), 73–78 (2012).  https://doi.org/10.1002/wcms.81CrossRefGoogle Scholar
  15. 15.
    Weigend, F., Ahlrichs, R., Peterson, K.A., Dunning, T.H., Pitzer, R.M., Bergner, A.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297 (2005).  https://doi.org/10.1039/b508541aCrossRefPubMedGoogle Scholar
  16. 16.
    Petrenko, T., Kossmann, S., Neese, F.: Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. J. Chem. Phys. 134(5), 054116 (2011).  https://doi.org/10.1063/1.3533441CrossRefPubMedGoogle Scholar
  17. 17.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
  18. 18.
    Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996).  https://doi.org/10.1063/1.472933CrossRefGoogle Scholar
  19. 19.
    Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110(13), 6158–6170 (1999).  https://doi.org/10.1063/1.478522CrossRefGoogle Scholar
  20. 20.
    Hess, B.A.: Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A 32(2), 756–763 (1985).  https://doi.org/10.1103/PhysRevA.32.756CrossRefGoogle Scholar
  21. 21.
    Hess, B.A.: Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33(6), 3742–3748 (1986).  https://doi.org/10.1103/PhysRevA.33.3742CrossRefGoogle Scholar
  22. 22.
    Jansen, G., Hess, B.A.: Revision of the Douglas-Kroll transformation. Phys. Rev. A 39(11), 6016–6017 (1989).  https://doi.org/10.1103/PhysRevA.39.6016CrossRefGoogle Scholar
  23. 23.
    Pantazis, D.A., Chen, X.-Y., Landis, C.R., Neese, F.: All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4(6), 908–919 (2008).  https://doi.org/10.1021/ct800047tCrossRefPubMedGoogle Scholar
  24. 24.
    Izsák, R., Neese, F.: An overlap fitted chain of spheres exchange method. J. Chem. Phys. 135(14), 144105 (2011).  https://doi.org/10.1063/1.3646921CrossRefPubMedGoogle Scholar
  25. 25.
    Neese, F., Wennmohs, F., Hansen, A., Becker, U.: Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356(1), 98–109 (2009).  https://doi.org/10.1016/j.chemphys.2008.10.036CrossRefGoogle Scholar
  26. 26.
    Messori, L., Balerna, A., Ascone, I., Castellano, C., Gabbiani, C., Casini, A., Marchioni, C., Jaouen, G., Congiu Castellano, A.: X-ray absorption spectroscopy studies of the adducts formed between cytotoxic gold compounds and two major serum proteins. JBIC, J. Biol. Inorg. Chem. 16(3), 491–499 (2011).  https://doi.org/10.1007/s00775-010-0748-5CrossRefPubMedGoogle Scholar
  27. 27.
    Gabbiani, C., Massai, L., Scaletti, F., Michelucci, E., Maiore, L., Cinellu, M.A., Messori, L.: Protein metalation by metal-based drugs: reactions of cytotoxic gold compounds with cytochrome c and lysozyme. JBIC, J. Biol. Inorg. Chem. 17(8), 1293–1302 (2012).  https://doi.org/10.1007/s00775-012-0952-6CrossRefPubMedGoogle Scholar
  28. 28.
    Garg, D., Torbett, B.E.: Advances in targeting nucleocapsid–nucleic acid interactions in HIV-1 therapy. Virus Res. 193, 135–143 (2014).  https://doi.org/10.1016/j.virusres.2014.07.004CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Spell, S.R., Mangrum, J.B., Peterson, E.J., Fabris, D., Ptak, R., Farrell, N.P.: Au(<scp> iii </scp>) compounds as HIV nucleocapsid protein (NCp7)–nucleic acid antagonists. Chem. Commun. 53(1), 91–94 (2017).  https://doi.org/10.1039/C6CC07970ACrossRefGoogle Scholar
  30. 30.
    Đurović, M.D., Bugarčić, Ž.D., Heinemann, F.W., van Eldik, R.: Substitution versus redox reactions of gold(III) complexes with L-cysteine, L-methionine and glutathione. Dalton Trans. 43(10), 3911–3921 (2014).  https://doi.org/10.1039/c3dt53140fCrossRefPubMedGoogle Scholar
  31. 31.
    Djeković, A., Petrović, B., Bugarčić, Ž.D., Puchta, R., van Eldik, R.: Kinetics and mechanism of the reactions of Au(III) complexes with some biologically relevant molecules. Dalton Trans. 41(13), 3633–3641 (2012).  https://doi.org/10.1039/c2dt11843bCrossRefPubMedGoogle Scholar
  32. 32.
    Summers, M.F., Henderson, L.E., Chance, M.R., South, T.L., Blake, P.R., Perez-Alvarado, G., Bess, J.W., Sowder, R.C., Arthur, L.O., Sagi, I., et al.: Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci. 1(5), 563–574 (1992).  https://doi.org/10.1002/pro.5560010502CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Giachini, L., Veronesi, G., Francia, F., Venturoli, G., Boscherini, F.: Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. J. Synchrotron Radiat. 17(1), 41–52 (2010)  https://doi.org/10.1107/s090904950904919xCrossRefGoogle Scholar
  34. 34.
    Mijovilovich, A., Meyer-Klaucke, W.: Simulating the XANES of metalloenzymes ? A case study. J. Synchrotron Radiat. 10(1), 64–68 (2003)  https://doi.org/10.1107/s0909049502017296CrossRefGoogle Scholar
  35. 35.
    Laskay, Ü.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A., Laskay, U.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A.: Gold finger formation studied by high-resolution mass spectrometry and in silico methods. Chem. Commun. 51(9), 1612–1615 (2015).  https://doi.org/10.1039/C4CC07490DCrossRefGoogle Scholar
  36. 36.
    Chang, S.-Y., Uehara, A., Booth, S.G., Ignatyev, K., Mosselmans, J.F.W., Dryfe, R.A.W., Schroeder, S.L.M.: Structure and bonding in Au(I) chloride species: a critical examination of X-ray absorption spectroscopy (XAS) data. RSC Adv. 5(9), 6912–6918 (2015).  https://doi.org/10.1039/C4RA13087ACrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations