Advertisement

Au(III) Series with κ2C,N and κ2N,N′ Ligands

  • Raphael Enoque Ferraz de PaivaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Gold(III) complexes are often seen as unstable in biological media, mainly due to the high content of sulfur-containing species that lead to redox processes. On the other hand, stabilizing Au(III) represents an interesting synthetic challenge, given the wide variety of possible strategies available. For that reason, we decided to explore the stabilization of Au(III) using the N^C donor 2-benzylpyridine (bnpy) ligand and compare it to the classic bipy-like N^N coordination motif.

References

  1. 1.
    Rigobello, M.P., Scutari, G., Folda, A., Bindoli, A.: Mitochondrial thioredoxin reductase inhibition by gold(I) compounds and concurrent stimulation of permeability transition and release of cytochrome c. Biochem. Pharmacol. 67(4), 689–696 (2004).  https://doi.org/10.1016/j.bcp.2003.09.038CrossRefPubMedGoogle Scholar
  2. 2.
    Henderson, W., Nicholson, B.K., Faville, S.J., Fan, D., Ranford, J.D.: Gold(III) thiosalicylate complexes containing cycloaurated 2-arylpyridine, 2-anilinopyridine and 2-benzylpyridine ligands. J. Organomet. Chem. 631(1–2), 41–46 (2001).  https://doi.org/10.1016/S0022-328X(01)00987-1CrossRefGoogle Scholar
  3. 3.
    Janzen, D.E., Doherty, S.R., Vanderveer, D.G., Hinkle, L.M., Benefield, D.A.D.A., Vashi, H.M., Grant, G.J.: Cyclometallated gold(III) complexes with a trithiacrown ligand: solventless Au(III) cyclometallation, intramolecular gold? sulfur interactions, and fluxional behavior in 1,4,7-trithiacyclononane Au(III) complexes. J. Organomet. Chem. 755, 47–57 (2014).  https://doi.org/10.1016/j.jorganchem.2013.12.048CrossRefGoogle Scholar
  4. 4.
    Pia Rigobello, M., Messori, L., Marcon, G., Agostina Cinellu, M., Bragadin, M., Folda, A., Scutari, G., Bindoli, A.: Gold complexes inhibit mitochondrial thioredoxin reductase: consequences on mitochondrial functions. J. Inorg. Biochem. 98(10), 1634–1641 (2004).  https://doi.org/10.1016/j.jinorgbio.2004.04.020CrossRefGoogle Scholar
  5. 5.
    Parish, R.V., Howe, B.P., Wright, J.P., Mack, J., Pritchard, R.G., Buckley, R.G., Elsome, A.M., Fricker, S.P.: Chemical and biological studies of dichloro(2-((dimethylamino)methyl)phenyl)gold(III). Inorg. Chem. 35(6), 1659–1666 (1996).  https://doi.org/10.1021/IC950343BCrossRefPubMedGoogle Scholar
  6. 6.
    Buckley, R.G., Elsome, A.M., Fricker, S.P., Henderson, G.R., Theobald, B.R.C., Parish, R.V., Howe, B.P., Kelland, L.R.: Antitumor properties of some 2-[(dimethylamino)methyl]phenylgold(III) complexes. J. Med. Chem. 39(26), 5208–5214 (1996).  https://doi.org/10.1021/jm9601563CrossRefPubMedGoogle Scholar
  7. 7.
    Massai, L., Cirri, D., Michelucci, E., Bartoli, G., Guerri, A., Cinellu, M.A., Cocco, F., Gabbiani, C., Messori, L.: Organogold(III) compounds as experimental anticancer agents: chemical and biological profiles. Biometals 29(5), 863–872 (2016).  https://doi.org/10.1007/s10534-016-9957-xCrossRefPubMedGoogle Scholar
  8. 8.
    Messori, L., Cinellu, M.A., Merlino, A.: Protein recognition of gold-based drugs: 3D structure of the complex formed when lysozyme reacts with Aubipyc. ACS Med. Chem. Lett. 5(10), 1110–1113 (2014).  https://doi.org/10.1021/ml500231bCrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Spell, S.R., Mangrum, J.B., Peterson, E.J., Fabris, D., Ptak, R., Farrell, N.P.: Au(iii) compounds as HIV nucleocapsid protein (NCp7)–nucleic acid antagonists. Chem. Commun. 53(1), 91–94 (2017).  https://doi.org/10.1039/C6CC07970ACrossRefGoogle Scholar
  10. 10.
    Jacques, A., Lebrun, C., Casini, A., Kieffer, I., Proux, O., Latour, J.-M., Sénèque, O.: Reactivity of Cys 4 zinc finger domains with gold(III) complexes: insights into the formation of “gold fingers”. Inorg. Chem. 54(8), 4104–4113 (2015).  https://doi.org/10.1021/acs.inorgchem.5b00360CrossRefGoogle Scholar
  11. 11.
    Cinellu, M.A., Zucca, A., Stoccoro, S., Minghetti, G., Manassero, M., Sansoni, M.: Synthesis and characterization of gold(III) adducts and cyclometallated derivatives with 2-substituted pyridines. Crystal structure of [Au{NC5H4(CMe2C6H4)-2}Cl2]. J. Chem. Soc. Dalt. Trans. (17), 2865–2872 (1995)  https://doi.org/10.1039/dt9950002865
  12. 12.
    Casini, A., Diawara, M.C., Scopelliti, R., Zakeeruddin, S.M., Grätzel, M., Dyson, P.J., Abbott, B.J., Mayo, J.G., Shoemaker, R.H., Boyd, M.R.: Synthesis, characterisation and biological properties of gold(III) compounds with modified bipyridine and bipyridylamine ligands. Dalton Trans. 39(9), 2239 (2010).  https://doi.org/10.1039/b921019aCrossRefPubMedGoogle Scholar
  13. 13.
    Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 71(1), 3–8 (2015).  https://doi.org/10.1107/S2053229614024218CrossRefGoogle Scholar
  14. 14.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42(2), 339–341 (2009).  https://doi.org/10.1107/S0021889808042726CrossRefGoogle Scholar
  15. 15.
    Bonamico, M., Dessy, G.: The crystal structure of anhydrous potassium tetrachloroaurate(III). Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 29(8), 1735–1736 (1973)  https://doi.org/10.1107/s0567740873005406CrossRefGoogle Scholar
  16. 16.
    Janiak, C.: A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands†. J. Chem. Soc. Dalt. Trans. (21), 3885–3896 (2000)  https://doi.org/10.1039/b003010o
  17. 17.
    Chifotides, H.T., Dunbar, K.R.: Anion − π interactions in supramolecular architectures. Acc. Chem. Res. 46(4), 894–906 (2013).  https://doi.org/10.1021/ar300251kCrossRefPubMedGoogle Scholar
  18. 18.
    Abbate, F., Orioli, P., Bruni, B., Marcon, G., Messori, L.: Crystal structure and solution chemistry of the cytotoxic complex 1,2-dichloro(o-phenanthroline)gold(III) chloride. Inorganica Chim. Acta 311(1), 1–5 (2000).  https://doi.org/10.1016/S0020-1693(00)00299-1CrossRefGoogle Scholar
  19. 19.
    Sanna, G., Pilo, M.I., Spano, N., Minghetti, G., Cinellu, M.A., Zucca, A., Seeber, R.: Electrochemical behaviour of cyclometallated gold(III) complexes. Evidence of transcyclometallation in the fate of electroreduced species. J. Organomet. Chem. 622(1), 47–53 (2001).  https://doi.org/10.1016/S0022-328X(00)00822-6CrossRefGoogle Scholar
  20. 20.
    Montero, D., Tachibana, C., Rahr Winther, J., Appenzeller-Herzog, C.: Intracellular glutathione pools are heterogeneously concentrated. Redox Biol. 1(1), 508–513 (2013).  https://doi.org/10.1016/j.redox.2013.10.005CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rychlewska, U., Warżajtis, B., Glišić, B.Đ., Živković, M.D., Rajković, S., Djuran, M.I.: Monocationic gold(III) Gly-l-His and l-Ala-l-His dipeptide complexes: crystal structures arising from solvent free and solvent-containing crystal formation and structural modifications tuned by counter-anions. Dalton Trans. 39(38), 8906–8913 (2010).  https://doi.org/10.1039/c0dt00163eCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations