Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 164 Accesses

Abstract

Auranofin is an FDA approved drug for the treatment of rheumatoid arthritis. In a repurposing effort, it has been extensively tested as an anticancer drug throughout the past decade. Regardless of the potent cytotoxicity observed for auranofin, there are many reports on lack of selectivity. Inspired by the structure of auranofin, and aiming to improve the cytotoxic selectivity, we decided to evaluate the cytotoxicity of the Au(I)-phosphine series of compounds. The correlation between chemical structure and reactivity of the compounds with model biomolecules such as N-Ac-Cys and ZnFs was deeply discussed in Chaps. 1 and 3 . Furthermore, the very same aspects that govern reactivity in the molecular level, such as the basicity and bulkiness of the phosphine ligand, σ-donating properties and lability of the co-ligands L (L = Cl or 4-dimethylaminopyridine, dmap) and overall charge of the compounds (neutral vs. cationic) are also expected to play a role in cytotoxic response, establishing an interesting set of parameters that can be correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnard, P.J., Berners-Price, S.J.: Targeting the mitochondrial cell death pathway with gold compounds. Coord. Chem. Rev. 251(13–14), 1889–1902 (2007). https://doi.org/10.1016/j.ccr.2007.04.006

    Article  CAS  Google Scholar 

  2. McKeage, M.J.: Gold opens mitochondrial pathways to apoptosis. Br. J. Pharmacol. 136(8), 1081–1082 (2002). https://doi.org/10.1038/sj.bjp.0704822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rigobello, M.P., Scutari, G., Folda, A., Bindoli, A.: Mitochondrial thioredoxin reductase inhibition by gold(I) compounds and concurrent stimulation of permeability transition and release of cytochrome c. Biochem. Pharmacol. 67(4), 689–696 (2004). https://doi.org/10.1016/j.bcp.2003.09.038

    Article  CAS  PubMed  Google Scholar 

  4. Rigobello, M.P., Scutari, G., Boscolo, R., Bindoli, A.: Induction of mitochondrial permeability transition by auranofin, a gold(I)-phosphine derivative. Br. J. Pharmacol. 136(8), 1162–1168 (2002). https://doi.org/10.1038/sj.bjp.0704823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rigobello, M.P., Callegaro, M.T., Barzon, E., Benetti, M., Bindoli, A.: Purification of Mitochondrial Thioredoxin Reductase and Its Involvement in the Redox Regulation of Membrane Permeability, vol. 24 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Phase I and II Study of Auranofin in Chronic Lymphocytic Leukemia (CLL)—Full Text View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/nct01419691?term=auranofin+cll&rank=1

  7. Mirabelli, C.K., Sung, C.-M., Zimmerman, J.P., Hill, D.T., Mong, S., Crooke, S.T.: Interactions of gold coordination complexes with DNA. Biochem. Pharmacol. 35(9), 1427–1433 (1986). https://doi.org/10.1016/0006-2952(86)90106-1

    Article  CAS  PubMed  Google Scholar 

  8. Gandin, V., Fernandes, A.P., Rigobello, M.P., Dani, B., Sorrentino, F., Tisato, F., Björnstedt, M., Bindoli, A., Sturaro, A., Rella, R., et al.: Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem. Pharmacol. 79(2), 90–101 (2010). https://doi.org/10.1016/j.bcp.2009.07.023

    Article  CAS  PubMed  Google Scholar 

  9. De Luca, A., Hartinger, C.G., Dyson, P.J., Lo Bello, M., Casini, A.: A new target for gold(I) compounds: glutathione-S-transferase inhibition by auranofin. J. Inorg. Biochem. 119, 38–42 (2013). https://doi.org/10.1016/j.jinorgbio.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  10. Karver, M.R., Krishnamurthy, D., Bottini, N., Barrios, A.M.: Gold(I) phosphine mediated selective inhibition of lymphoid tyrosine phosphatase. J. Inorg. Biochem. 104(3), 268–273 (2010). https://doi.org/10.1016/j.jinorgbio.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  11. Micale, N., Schirmeister, T., Ettari, R., Cinellu, M.A., Maiore, L., Serratrice, M., Gabbiani, C., Massai, L., Messori, L.: Selected cytotoxic gold compounds cause significant inhibition of 20S proteasome catalytic activities. J. Inorg. Biochem. 141, 79–82 (2014). https://doi.org/10.1016/j.jinorgbio.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  12. Mirabelli, C.K., Johnson, R.K., Sung, C., Faucette, L., Muirhead, K., Crooke, S.T.: Evaluation of the in vivo antitumor activity and in vitro cytotoxic properties of auranofin, a coordinated gold compound, in murine tumor models. Cancer Res. 45, 32–39 (1985)

    CAS  PubMed  Google Scholar 

  13. Snyder, R.M., Mirabelli, C.K., Crooke, S.T.: Cellular interactions of auranofin and a related gold complex with raw 264.7 macrophages. Biochem. Pharmacol. 36(5), 647–654 (1987). https://doi.org/10.1016/0006-2952(87)90715-5

    Article  CAS  PubMed  Google Scholar 

  14. Eustermann, S., Videler, H., Yang, J.C., Cole, P.T., Gruszka, D., Veprintsev, D., Neuhaus, D.: The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J. Mol. Biol. 407(1), 149–170 (2011). https://doi.org/10.1016/j.jmb.2011.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park, S.-J., Kim, I.-S.: The role of p38 MAPK activation in auranofin-induced apoptosis of human promyelocytic leukaemia HL-60 cells. Br. J. Pharmacol. 146(4), 506–513 (2005). https://doi.org/10.1038/sj.bjp.0706360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Omata, Y., Folan, M., Shaw, M., Messer, R.L., Lockwood, P.E., Hobbs, D., Bouillaguet, S., Sano, H., Lewis, J.B., Wataha, J.C.: Sublethal concentrations of diverse gold compounds inhibit mammalian cytosolic thioredoxin reductase (TrxR1). Toxicol. Vitr. 20(6), 882–890 (2006). https://doi.org/10.1016/j.tiv.2006.01.012

    Article  CAS  Google Scholar 

  17. Omata, Y., Lewis, J.B., Lockwood, P.E., Tseng, W.Y., Messer, R.L., Bouillaguet, S., Wataha, J.C.: Gold-induced reactive oxygen species (ROS) do not mediate suppression of monocytic mitochondrial or secretory function. Toxicol. In Vitro 20(5), 625–633 (2006). https://doi.org/10.1016/j.tiv.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Solovyan, V.T., Keski-Oja, J.: Apoptosis of human endothelial cells is accompanied by proteolytic processing of latent TGF-β binding proteins and activation of TGF-β. Cell Death Differ. 12(7), 815–826 (2005). https://doi.org/10.1038/sj.cdd.4401618

    Article  CAS  PubMed  Google Scholar 

  19. Richter, K., Konzack, A., Pihlajaniemi, T., Heljasvaara, R., Kietzmann, T.: Redox-fibrosis: impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biol. 6, 344–352 (2015). https://doi.org/10.1016/j.redox.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roskoski, R.: ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66(2), 105–143 (2012). https://doi.org/10.1016/j.phrs.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  21. Woessmann, W., Chen, X., Borkhardt, A.: Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines. Cancer Chemother. Pharmacol. 50(5), 397–404 (2002). https://doi.org/10.1007/s00280-002-0502-y

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J., Mao, W., Ding, B., Liang, C.-S.: ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. AJP Hear. Circ. Physiol. 295(5), H1956–H1965 (2008). https://doi.org/10.1152/ajpheart.00407.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. She, Q.B., Chen, N., Dong, Z.: ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J. Biol. Chem. 275(27), 20444–20449 (2000). https://doi.org/10.1074/jbc.M001020200

    Article  CAS  PubMed  Google Scholar 

  24. Cagnol, S., Chambard, J.-C.: ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J. 277(1), 2–21 (2010). https://doi.org/10.1111/j.1742-4658.2009.07366.x

    Article  CAS  PubMed  Google Scholar 

  25. Andermark, V., Göke, K., Kokoschka, M., Abu el Maaty, M.A., Lum, C.T., Zou, T., Sun, R.W.-Y., Aguiló, E., Oehninger, L., Rodríguez, L., et al.: Alkynyl gold(I) phosphane complexes: evaluation of structure–activity-relationships for the phosphane ligands, effects on key signaling proteins and preliminary in-vivo studies with a nanoformulated complex. J. Inorg. Biochem. 160, 140–148 (2016). https://doi.org/10.1016/j.jinorgbio.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  26. Holenya, P., Can, S., Rubbiani, R., Alborzinia, H., Jünger, A., Cheng, X., Ott, I., Wölfl, S.: Detailed analysis of pro-apoptotic signaling and metabolic adaptation triggered by a N-heterocyclic carbene–gold(I) complex. Metallomics 6(9), 1591–1601 (2014). https://doi.org/10.1039/C4MT00075G

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Enoque Ferraz de Paiva .

Appendix

Appendix

1.1 Cellular Morphology

See Fig. 4.6.

Fig. 4.6
figure 6

Morphology of CEM cell line untreated and treated with IC75-concentrations of compounds [AuCl(Et3P)] (I-1), [Au(dmap)(Et3P)]+ (I-2) and auranofin (I-3)

1.2 Flow Cytometry

See Fig. 4.7.

Fig. 4.7
figure 7

Flow cytometry profile of CEM cell treated with IC25 concentrations for 6 h

1.3 Mechanism of Auranofin-Induced Apoptosis

See Fig. 4.8.

Fig. 4.8
figure 8

Apoptotic mechanism caused by auranofin on CEM cells. The mechanism is consistent with previous results on HL-60 leukemia cells treated with auranofin [15]

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferraz de Paiva, R.E. (2018). Probing Cells: Evaluating Cytotoxicity. In: Gold(I,III) Complexes Designed for Selective Targeting and Inhibition of Zinc Finger Proteins. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00853-6_4

Download citation

Publish with us

Policies and ethics