Advertisement

Probing Cells: Evaluating Cytotoxicity

  • Raphael Enoque Ferraz de PaivaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Auranofin is an FDA approved drug for the treatment of rheumatoid arthritis. In a repurposing effort, it has been extensively tested as an anticancer drug throughout the past decade. Regardless of the potent cytotoxicity observed for auranofin, there are many reports on lack of selectivity. Inspired by the structure of auranofin, and aiming to improve the cytotoxic selectivity, we decided to evaluate the cytotoxicity of the Au(I)-phosphine series of compounds. The correlation between chemical structure and reactivity of the compounds with model biomolecules such as N-Ac-Cys and ZnFs was deeply discussed in Chaps. 1 and 3 . Furthermore, the very same aspects that govern reactivity in the molecular level, such as the basicity and bulkiness of the phosphine ligand, σ-donating properties and lability of the co-ligands L (L = Cl or 4-dimethylaminopyridine, dmap) and overall charge of the compounds (neutral vs. cationic) are also expected to play a role in cytotoxic response, establishing an interesting set of parameters that can be correlated.

References

  1. 1.
    Barnard, P.J., Berners-Price, S.J.: Targeting the mitochondrial cell death pathway with gold compounds. Coord. Chem. Rev. 251(13–14), 1889–1902 (2007).  https://doi.org/10.1016/j.ccr.2007.04.006CrossRefGoogle Scholar
  2. 2.
    McKeage, M.J.: Gold opens mitochondrial pathways to apoptosis. Br. J. Pharmacol. 136(8), 1081–1082 (2002).  https://doi.org/10.1038/sj.bjp.0704822CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rigobello, M.P., Scutari, G., Folda, A., Bindoli, A.: Mitochondrial thioredoxin reductase inhibition by gold(I) compounds and concurrent stimulation of permeability transition and release of cytochrome c. Biochem. Pharmacol. 67(4), 689–696 (2004).  https://doi.org/10.1016/j.bcp.2003.09.038CrossRefPubMedGoogle Scholar
  4. 4.
    Rigobello, M.P., Scutari, G., Boscolo, R., Bindoli, A.: Induction of mitochondrial permeability transition by auranofin, a gold(I)-phosphine derivative. Br. J. Pharmacol. 136(8), 1162–1168 (2002).  https://doi.org/10.1038/sj.bjp.0704823CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rigobello, M.P., Callegaro, M.T., Barzon, E., Benetti, M., Bindoli, A.: Purification of Mitochondrial Thioredoxin Reductase and Its Involvement in the Redox Regulation of Membrane Permeability, vol. 24 (1998)CrossRefGoogle Scholar
  6. 6.
    Phase I and II Study of Auranofin in Chronic Lymphocytic Leukemia (CLL)—Full Text View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/nct01419691?term=auranofin+cll&rank=1
  7. 7.
    Mirabelli, C.K., Sung, C.-M., Zimmerman, J.P., Hill, D.T., Mong, S., Crooke, S.T.: Interactions of gold coordination complexes with DNA. Biochem. Pharmacol. 35(9), 1427–1433 (1986).  https://doi.org/10.1016/0006-2952(86)90106-1CrossRefPubMedGoogle Scholar
  8. 8.
    Gandin, V., Fernandes, A.P., Rigobello, M.P., Dani, B., Sorrentino, F., Tisato, F., Björnstedt, M., Bindoli, A., Sturaro, A., Rella, R., et al.: Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem. Pharmacol. 79(2), 90–101 (2010).  https://doi.org/10.1016/j.bcp.2009.07.023CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    De Luca, A., Hartinger, C.G., Dyson, P.J., Lo Bello, M., Casini, A.: A new target for gold(I) compounds: glutathione-S-transferase inhibition by auranofin. J. Inorg. Biochem. 119, 38–42 (2013).  https://doi.org/10.1016/j.jinorgbio.2012.08.006CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Karver, M.R., Krishnamurthy, D., Bottini, N., Barrios, A.M.: Gold(I) phosphine mediated selective inhibition of lymphoid tyrosine phosphatase. J. Inorg. Biochem. 104(3), 268–273 (2010).  https://doi.org/10.1016/j.jinorgbio.2009.12.012CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Micale, N., Schirmeister, T., Ettari, R., Cinellu, M.A., Maiore, L., Serratrice, M., Gabbiani, C., Massai, L., Messori, L.: Selected cytotoxic gold compounds cause significant inhibition of 20S proteasome catalytic activities. J. Inorg. Biochem. 141, 79–82 (2014).  https://doi.org/10.1016/j.jinorgbio.2014.08.001CrossRefPubMedGoogle Scholar
  12. 12.
    Mirabelli, C.K., Johnson, R.K., Sung, C., Faucette, L., Muirhead, K., Crooke, S.T.: Evaluation of the in vivo antitumor activity and in vitro cytotoxic properties of auranofin, a coordinated gold compound, in murine tumor models. Cancer Res. 45, 32–39 (1985)PubMedGoogle Scholar
  13. 13.
    Snyder, R.M., Mirabelli, C.K., Crooke, S.T.: Cellular interactions of auranofin and a related gold complex with raw 264.7 macrophages. Biochem. Pharmacol. 36(5), 647–654 (1987).  https://doi.org/10.1016/0006-2952(87)90715-5CrossRefPubMedGoogle Scholar
  14. 14.
    Eustermann, S., Videler, H., Yang, J.C., Cole, P.T., Gruszka, D., Veprintsev, D., Neuhaus, D.: The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J. Mol. Biol. 407(1), 149–170 (2011).  https://doi.org/10.1016/j.jmb.2011.01.034CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Park, S.-J., Kim, I.-S.: The role of p38 MAPK activation in auranofin-induced apoptosis of human promyelocytic leukaemia HL-60 cells. Br. J. Pharmacol. 146(4), 506–513 (2005).  https://doi.org/10.1038/sj.bjp.0706360CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Omata, Y., Folan, M., Shaw, M., Messer, R.L., Lockwood, P.E., Hobbs, D., Bouillaguet, S., Sano, H., Lewis, J.B., Wataha, J.C.: Sublethal concentrations of diverse gold compounds inhibit mammalian cytosolic thioredoxin reductase (TrxR1). Toxicol. Vitr. 20(6), 882–890 (2006).  https://doi.org/10.1016/j.tiv.2006.01.012CrossRefGoogle Scholar
  17. 17.
    Omata, Y., Lewis, J.B., Lockwood, P.E., Tseng, W.Y., Messer, R.L., Bouillaguet, S., Wataha, J.C.: Gold-induced reactive oxygen species (ROS) do not mediate suppression of monocytic mitochondrial or secretory function. Toxicol. In Vitro 20(5), 625–633 (2006).  https://doi.org/10.1016/j.tiv.2005.11.001CrossRefPubMedGoogle Scholar
  18. 18.
    Solovyan, V.T., Keski-Oja, J.: Apoptosis of human endothelial cells is accompanied by proteolytic processing of latent TGF-β binding proteins and activation of TGF-β. Cell Death Differ. 12(7), 815–826 (2005).  https://doi.org/10.1038/sj.cdd.4401618CrossRefPubMedGoogle Scholar
  19. 19.
    Richter, K., Konzack, A., Pihlajaniemi, T., Heljasvaara, R., Kietzmann, T.: Redox-fibrosis: impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biol. 6, 344–352 (2015).  https://doi.org/10.1016/j.redox.2015.08.015CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Roskoski, R.: ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66(2), 105–143 (2012).  https://doi.org/10.1016/j.phrs.2012.04.005CrossRefPubMedGoogle Scholar
  21. 21.
    Woessmann, W., Chen, X., Borkhardt, A.: Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines. Cancer Chemother. Pharmacol. 50(5), 397–404 (2002).  https://doi.org/10.1007/s00280-002-0502-yCrossRefPubMedGoogle Scholar
  22. 22.
    Liu, J., Mao, W., Ding, B., Liang, C.-S.: ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. AJP Hear. Circ. Physiol. 295(5), H1956–H1965 (2008).  https://doi.org/10.1152/ajpheart.00407.2008CrossRefGoogle Scholar
  23. 23.
    She, Q.B., Chen, N., Dong, Z.: ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J. Biol. Chem. 275(27), 20444–20449 (2000).  https://doi.org/10.1074/jbc.M001020200CrossRefPubMedGoogle Scholar
  24. 24.
    Cagnol, S., Chambard, J.-C.: ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J. 277(1), 2–21 (2010).  https://doi.org/10.1111/j.1742-4658.2009.07366.xCrossRefPubMedGoogle Scholar
  25. 25.
    Andermark, V., Göke, K., Kokoschka, M., Abu el Maaty, M.A., Lum, C.T., Zou, T., Sun, R.W.-Y., Aguiló, E., Oehninger, L., Rodríguez, L., et al.: Alkynyl gold(I) phosphane complexes: evaluation of structure–activity-relationships for the phosphane ligands, effects on key signaling proteins and preliminary in-vivo studies with a nanoformulated complex. J. Inorg. Biochem. 160, 140–148 (2016).  https://doi.org/10.1016/j.jinorgbio.2015.12.020CrossRefPubMedGoogle Scholar
  26. 26.
    Holenya, P., Can, S., Rubbiani, R., Alborzinia, H., Jünger, A., Cheng, X., Ott, I., Wölfl, S.: Detailed analysis of pro-apoptotic signaling and metabolic adaptation triggered by a N-heterocyclic carbene–gold(I) complex. Metallomics 6(9), 1591–1601 (2014).  https://doi.org/10.1039/C4MT00075GCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations