Advertisement

Probing Gold: X-Ray Absorption Spectroscopy

  • Raphael Enoque Ferraz de PaivaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Here, our focus shifts towards probing directly the metal. X-ray Absorption Spectroscopy (XAS) is appropriate for structural studies due to its capability to specifically probe the geometry around the metal absorber. Additionally, XAS spectra are sensitive to the electronic density on the mental center. As consequence, it represents an extremely powerful technique that is able to distinguish between oxidation states and coordination spheres of a metal complex, providing insights on the electronic and geometric structural details of the protein bound metal centers. In this chapter, the interaction of [AuCl(Et3P)] (I-1) and auranofin (I-3) with zinc finger peptides was investigated using Au L3-edge XAS measurements. To further support our conclusions, the data obtained for the reaction products were compared to the XAS spectra of selected model compounds and also to TD-DFT-calculated spectra. The viral NCp7 ZnF2 was compared to the human transcription factor Sp1 ZnF3. We examine the effects of the zinc coordination sphere in dictating reactivity and delineating the intimate mechanisms of metal ions substitution in a ZnF template. In the case of Au(I) compounds, we confirm the Lewis acid electrophilic attack of [AuCl(Et3P)] and auranofin after interaction with NCp7, resulting in a common final product with Cys-Au-PEt3 coordination sphere. In Chap. 1 , we demonstrated that the reaction product of [AuCl(Et3P)] with Sp1 had a remarkably clean mass spectrum. For that reason, we decided to purify and isolate the AuF obtained from that reaction and also study it using XAS. A Cys-Au-Cys coordination sphere is suggested for the the purified AuF studied here, as indicated by the electron rich gold center observed by XAS. As first discussed in Chap. 1 , we also demonstrate here that the reactivity of [AuCl(Et3P)] is also dependent on the ZnF core targeted.

References

  1. 1.
    Corbi, P.P., Quintão, F.A., Ferraresi, D.K.D., Lustri, W.R., Amaral, A.C., Massabni, A.C.: Chemical, spectroscopic characterization, and in vitro antibacterial studies of a new gold(I) complex with N-acetyl-L-cysteine. J. Coord. Chem. 63(8), 1390–1397 (2010).  https://doi.org/10.1080/00958971003782608CrossRefGoogle Scholar
  2. 2.
    Tiekink, E.R.T. Chloro(triethylphosphine)gold(I). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 45(8), 1233–1234 (1989).  https://doi.org/10.1107/s0108270189001915CrossRefGoogle Scholar
  3. 3.
    Grant, T.A., Forward, J.M., Fackler, J.P.: Crystal structure of 2-mercapto-2-thiazoline(triphenylphosphine)-gold(I), [Au(C3H4NS2)P(C6H5)3]. Zeitschrift für Krist.—Cryst. Mater. 211(7), 483–484 (1996).  https://doi.org/10.1524/zkri.1996.211.7.483CrossRefGoogle Scholar
  4. 4.
    Abbehausen, C., Manzano, C.M., Corbi, P.P., Farrell, N.P.: Effects of coordination mode of 2-mercaptothiazoline on reactivity of Au(I) compounds with thiols and sulfur-containing proteins. J. Inorg. Biochem. 165, 136–145 (2016).  https://doi.org/10.1016/j.jinorgbio.2016.05.011CrossRefPubMedGoogle Scholar
  5. 5.
    Rosenzweig, A., Cromer, D.T.: The crystal structure of KAu(CN)2. Acta Crystallogr. 12(10), 709–712 (1959).  https://doi.org/10.1107/S0365110X59002109CrossRefGoogle Scholar
  6. 6.
    Baenziger, N.C., Bennett, W.E., Soborofe, D.M.: Chloro(triphenylphosphine)gold(I). Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 32(3), 962–963 (1976).  https://doi.org/10.1107/s0567740876004330CrossRefGoogle Scholar
  7. 7.
    Horvath, U.E.I., Cronje, S., Nogai, S.D., Raubenheimer, H.G.: A second polymorph of (2-thiazolidinethionato)(triphenylphosphine)gold(I). Acta Crystallogr. Sect. E Struct. Reports (Online) 62(7), m1641–m1643 (2006).  https://doi.org/10.1107/S1600536806023166CrossRefGoogle Scholar
  8. 8.
    Horvath, U.E.I., Raubenheimer, H.G.: A third polymorph of (2-thiazolidinethionato)(triphenylphosphine)gold(I). Acta Crystallogr. Sect. E Struct. Reports (Online) 62(7), m1644–m1645 (2006).  https://doi.org/10.1107/S1600536806023178CrossRefGoogle Scholar
  9. 9.
    Jones, P.G., Lautner, J.: Redetermination of the structure of cyano(triphenylphoshine)gold(I). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 44(12), 2091–2093 (1988).  https://doi.org/10.1107/s0108270188008443CrossRefGoogle Scholar
  10. 10.
    Hill, D.T., Sutton, B.M.: (2, 3, 4, 6-tetra-O-acetyl-1-thio-β-D-glucopyranosato-S)(triethylphosphine)gold, C20H34AuO9PS. Cryst. Struct. Commun. 9(3), 679–686 (1980)Google Scholar
  11. 11.
    Abbehausen, C., Peterson, E.J., De Paiva, R.E.F., Corbi, P.P., Formiga, A.L.B., Qu, Y., Farrell, N.P.: Gold(I)-phosphine-N-heterocycles: biological activity and specific (ligand) interactions on the C-terminal HIVNCp7 zinc finger. Inorg. Chem. 52(19), 11280–11287 (2013).  https://doi.org/10.1021/ic401535sCrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Figueroa, S.J.A., Mauricio, J.C., Murari, J., Beniz, D.B., Piton, J.R., Slepicka, H.H., de Sousa, M.F., Espíndola, A.M., Levinsky, A.P.S.: Upgrades to the XAFS2 beamline control system and to the endstation at the LNLS. J. Phys: Conf. Ser. 712(1), 012022 (2016).  https://doi.org/10.1088/1742-6596/712/1/012022CrossRefGoogle Scholar
  13. 13.
    Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005).  https://doi.org/10.1107/S0909049505012719CrossRefPubMedGoogle Scholar
  14. 14.
    Tolentino, H.C.N., Ramos, A.Y., Alves, M.C.M., Barrea, R.A., Tamura, E., Cezar, J.C., Watanabe, N.: A, 2.3 to 25 keV XAS beamline at LNLS. J. Synchrotron Radiat. 8(3), 1040–1046 (2001).  https://doi.org/10.1107/S0909049501005143CrossRefPubMedGoogle Scholar
  15. 15.
    Neese, F.: The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(1), 73–78 (2012).  https://doi.org/10.1002/wcms.81CrossRefGoogle Scholar
  16. 16.
    Weigend, F., Ahlrichs, R., Peterson, K.A., Dunning, T.H., Pitzer, R.M., Bergner, A.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297 (2005).  https://doi.org/10.1039/b508541aCrossRefPubMedGoogle Scholar
  17. 17.
    Petrenko, T., Kossmann, S., Neese, F.: Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. J. Chem. Phys. 134(5), 054116 (2011).  https://doi.org/10.1063/1.3533441CrossRefPubMedGoogle Scholar
  18. 18.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
  19. 19.
    Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996).  https://doi.org/10.1063/1.472933CrossRefGoogle Scholar
  20. 20.
    Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110(13), 6158–6170 (1999).  https://doi.org/10.1063/1.478522CrossRefGoogle Scholar
  21. 21.
    Hess, B.A.: Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A 32(2), 756–763 (1985).  https://doi.org/10.1103/PhysRevA.32.756CrossRefGoogle Scholar
  22. 22.
    Hess, B.A.: Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33(6), 3742–3748 (1986).  https://doi.org/10.1103/PhysRevA.33.3742CrossRefGoogle Scholar
  23. 23.
    Jansen, G., Hess, B.A.: Revision of the Douglas-Kroll transformation. Phys. Rev. A 39(11), 6016–6017 (1989).  https://doi.org/10.1103/PhysRevA.39.6016CrossRefGoogle Scholar
  24. 24.
    Pantazis, D.A., Chen, X.-Y., Landis, C.R., Neese, F.: All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4(6), 908–919 (2008).  https://doi.org/10.1021/ct800047tCrossRefPubMedGoogle Scholar
  25. 25.
    Izsák, R., Neese, F.: An overlap fitted chain of spheres exchange method. J. Chem. Phys. 135(14), 144105 (2011).  https://doi.org/10.1063/1.3646921CrossRefPubMedGoogle Scholar
  26. 26.
    Neese, F., Wennmohs, F., Hansen, A., Becker, U.: Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356(1), 98–109 (2009).  https://doi.org/10.1016/j.chemphys.2008.10.036CrossRefGoogle Scholar
  27. 27.
    Chang, S.-Y., Molleta, L.B., Booth, S.G., Uehara, A., Mosselmans, J.F.W., Ignatyev, K., Dryfe, R.A.W., Schroeder, S.L.M.: Automated analysis of XANES: a feasibility study of Au reference compounds. J. Phys: Conf. Ser. 712(1), 012070 (2016).  https://doi.org/10.1088/1742-6596/712/1/012070CrossRefGoogle Scholar
  28. 28.
    Rehr, J.J., Albers, R.C.: Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72(3), 621–654 (2000).  https://doi.org/10.1103/RevModPhys.72.621CrossRefGoogle Scholar
  29. 29.
    Westre, T.E., Kennepohl, P., DeWitt, J.G., Hedman, B., Hodgson, K.O., Solomon, E.I.: A multiplet analysis of Fe K-edge 1 s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119(27), 6297–6314 (1997).  https://doi.org/10.1021/ja964352aCrossRefGoogle Scholar
  30. 30.
    van der Veen, R.M., Kas, J.J., Milne, C.J., Pham, V.-T., Nahhas, A., El Lima, F.A., Vithanage, D.A., Rehr, J.J., Abela, R., Chergui, M.: L-edge XANES analysis of photoexcited metal complexes in solution. Phys. Chem. Chem. Phys. 12(21), 5551 (2010).  https://doi.org/10.1039/b927033gCrossRefGoogle Scholar
  31. 31.
    Alperovich, I., Smolentsev, G., Moonshiram, D., Jurss, J.W., Concepcion, J.J., Meyer, T.J., Soldatov, A., Pushkar, Y.: Understanding the electronic structure of 4d metal complexes: from molecular spinors to L-edge spectra of a di-Ru catalyst. J. Am. Chem. Soc. 133(39), 15786–15794 (2011).  https://doi.org/10.1021/ja207409qCrossRefPubMedGoogle Scholar
  32. 32.
    Larabee, J.L., Hocker, J.R., Hanas, J.S.: Mechanisms of aurothiomalate-Cys2His2 zinc finger interactions. Chem. Res. Toxicol. 18(12), 1943–1954 (2005).  https://doi.org/10.1021/tx0501435CrossRefGoogle Scholar
  33. 33.
    Du, Z., de Paiva, R.E.F., Nelson, K., Farrell, N.P.: Diversity in gold finger structure elucidated by traveling-wave ion mobility mass spectrometry. Angew. Chemie Int. Ed. 56(16), 4464–4467 (2017).  https://doi.org/10.1002/anie.201612494CrossRefGoogle Scholar
  34. 34.
    DeBeer George, S., Petrenko, T., Neese, F.: Prediction of iron K-edge absorption spectra using time-dependent density functional theory. J. Phys. Chem. A 112(50), 12936–12943 (2008).  https://doi.org/10.1021/jp803174mCrossRefPubMedGoogle Scholar
  35. 35.
    Lima, F.A., Bjornsson, R., Weyhermüller, T., Chandrasekaran, P., Glatzel, P., Neese, F., DeBeer, S., Shah, V.K., Konig, C., van Bokhoven, J.A., et al.: High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory. Phys. Chem. Chem. Phys. 15(48), 20911 (2013).  https://doi.org/10.1039/c3cp53133cCrossRefPubMedGoogle Scholar
  36. 36.
    Bjornsson, R., Lima, F.A., Spatzal, T., Weyhermüller, T., Glatzel, P., Bill, E., Einsle, O., Neese, F., DeBeer, S., Hoffman, B.M.: Identification of a spin-coupled Mo(III) in the nitrogenase iron–molybdenum cofactor. Chem. Sci. 5(8), 3096–3103 (2014).  https://doi.org/10.1039/C4SC00337CCrossRefGoogle Scholar
  37. 37.
    Kowalska, J.K., Hahn, A.W., Albers, A., Schiewer, C.E., Bjornsson, R., Lima, F.A., Meyer, F., DeBeer, S.: X-ray absorption and emission spectroscopic studies of [L2Fe2S2]n model complexes: implications for the experimental evaluation of redox states in iron-sulfur clusters. Inorg. Chem. 55(9), 4485–4497 (2016).  https://doi.org/10.1021/acs.inorgchem.6b00295CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hugenbruch, S., Shafaat, H.S., Krämer, T., Delgado-Jaime, M.U., Weber, K., Neese, F., Lubitz, W., DeBeer, S., Weng, T.-C., Zwart, P.H., et al.: In search of metal hydrides: an X-ray absorption and emission study of [NiFe] hydrogenase model complexes. Phys. Chem. Chem. Phys. 18(16), 10688–10699 (2016).  https://doi.org/10.1039/C5CP07293JCrossRefPubMedGoogle Scholar
  39. 39.
    Roemelt, M., Beckwith, M.A., Duboc, C., Collomb, M.-N., Neese, F., DeBeer, S.: Manganese K-edge X-Ray absorption spectroscopy as a probe of the metal-ligand interactions in coordination compounds. Inorg. Chem. 51(1), 680–687 (2012).  https://doi.org/10.1021/ic202229bCrossRefPubMedGoogle Scholar
  40. 40.
    Rees, J.A., Wandzilak, A., Maganas, D., Wurster, N.I.C., Hugenbruch, S., Kowalska, J.K., Pollock, C.J., Lima, F.A., Finkelstein, K.D., DeBeer, S.: Experimental and theoretical correlations between vanadium K-edge X-ray absorption and Kβ emission spectra. JBIC, J. Biol. Inorg. Chem. 21(5–6), 793–805 (2016).  https://doi.org/10.1007/s00775-016-1358-7CrossRefPubMedGoogle Scholar
  41. 41.
    Bjornsson, R., Delgado-Jaime, M.U., Lima, F.A., Sippel, D., Schlesier, J., Weyhermüller, T., Einsle, O., Neese, F., DeBeer, S., Weyherm¸ller, T., et al.: Molybdenum L-edge XAS spectra of MoFe nitrogenase 641(1), 65–71 (2015).  https://doi.org/10.1002/zaac.201400446CrossRefGoogle Scholar
  42. 42.
    Posewitz, M.C., Wilcox, D.E.: Properties of the Sp1 zinc finger 3 peptide: coordination chemistry, redox reactions, and metal binding competition with metallothionein. Chem. Res. Toxicol. 8(8), 1020–1028 (1995).  https://doi.org/10.1021/tx00050a005CrossRefPubMedGoogle Scholar
  43. 43.
    Mély, Y., De Rocquigny, H., Morellet, N., Roques, B.P., Gérard, D.: Zinc binding to the HIV-1 nucleocapsid protein: a thermodynamic investigation by fluorescence spectroscopy. Biochemistry 35(16), 5175–5182 (1996).  https://doi.org/10.1021/bi952587dCrossRefPubMedGoogle Scholar
  44. 44.
    Messori, L., Balerna, A., Ascone, I., Castellano, C., Gabbiani, C., Casini, A., Marchioni, C., Jaouen, G., Congiu Castellano, A.: X-ray absorption spectroscopy studies of the adducts formed between cytotoxic gold compounds and two major serum proteins. J. Biol. Inorg. Chem. (JBIC) 16(3), 491–499 (2011).  https://doi.org/10.1007/s00775-010-0748-5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations