Advertisement

Probing the Protein: Ion Mobility Spectrometry

  • Raphael Enoque Ferraz de PaivaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Auration of zinc finger peptides represents a topic of wide interest in bioinorganic chemistry as well as a fundamental problem for inorganic chemistry, since we are evaluating the replacement of a tetrahedrally-coordinated Zn(II) by a linear-coordinated Au(I). The compound [AuCl(Et3P)] (I-1) was selected as Au(I) donor, and the interaction with NCp7 (ZnF2) and Sp1 (F3) were studied by traveling-wave ion mobility mass spectrometry (TWIM-MS) coupled with collision induced dissociation (CID). This approach allowed inequivocal elucidation of specific binding sites and modes of gold-modified NCp7 (ZnF2) and Sp1 (ZnF3). While linear Cys-Au-Cys is indicated for NCp7 (ZnF2), a Cys-Au-His mode is indicated for the Sp1 (ZnF3) case.

References

  1. 1.
    Hartinger, C.G., Groessl, M., Meier, S.M., Casini, A., Dyson, P.J., Tavernelli, I., Keppler, B.K., Jaehde, U., Messori, L., Messori, L., et al.: Application of mass spectrometric techniques to delineate the modes-of-action of anticancer metallodrugs. Chem. Soc. Rev. 42(14), 6186 (2013).  https://doi.org/10.1039/c3cs35532bCrossRefPubMedGoogle Scholar
  2. 2.
    Quintal, S.M., dePaula, Q.A., Farrell, N.P.: Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 3(2), 121–139 (2011).  https://doi.org/10.1039/c0mt00070aCrossRefGoogle Scholar
  3. 3.
    Spell, S.R., Farrell, N.P.: Synthesis and properties of the first [Au(dien)(N-heterocycle)]3+ compounds. Inorg. Chem. 53(1), 30–32 (2014).  https://doi.org/10.1021/ic402772jCrossRefPubMedGoogle Scholar
  4. 4.
    Laskay, Ü.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A., Laskay, U.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A.: Gold finger formation studied by high-resolution mass spectrometry and in silico methods. Chem. Commun. 51(9), 1612–1615 (2015).  https://doi.org/10.1039/C4CC07490DCrossRefGoogle Scholar
  5. 5.
    Spell, S.R., Mangrum, J.B., Peterson, E.J., Fabris, D., Ptak, R., Farrell, N.P.: Au(III) compounds as HIV nucleocapsid protein (NCp7)–nucleic acid antagonists. Chem. Commun. 53(1), 91–94 (2017).  https://doi.org/10.1039/C6CC07970ACrossRefGoogle Scholar
  6. 6.
    Karver, M.R., Krishnamurthy, D., Kulkarni, R.A., Bottini, N., Barrios, A.M.: Identifying potent, selective protein tyrosine phosphatase inhibitors from a library of Au(I) complexes. J. Med. Chem. 52(21), 6912–6918 (2009).  https://doi.org/10.1021/jm901220mCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Diakun, G.P., Fairall, L., Klug, A.: EXAFS study of the zinc-binding sites in the protein transcription factor IIIA. Nature 324(6098), 698–699 (1986).  https://doi.org/10.1038/324698a0CrossRefPubMedGoogle Scholar
  8. 8.
    Berners-Price, S.J., Filipovska, A.: Gold compounds as therapeutic agents for human diseases. Metallomics 3(9), 863 (2011).  https://doi.org/10.1039/c1mt00062dCrossRefPubMedGoogle Scholar
  9. 9.
    Bindoli, A., Rigobello, M.P., Scutari, G., Gabbiani, C., Casini, A., Messori, L.: Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs. Coord. Chem. Rev. 253(11), 1692–1707 (2009).  https://doi.org/10.1016/j.ccr.2009.02.026CrossRefGoogle Scholar
  10. 10.
    Nobili, S., Mini, E., Landini, I., Gabbiani, C., Casini, A., Messori, L.: Gold compounds as anticancer agents: chemistry, cellular pharmacology, and preclinical studies. Med. Res. Rev. 30(3), 550–580 (2009).  https://doi.org/10.1002/med.20168CrossRefGoogle Scholar
  11. 11.
    Ott, I.: On the medicinal chemistry of gold complexes as anticancer drugs. Coord. Chem. Rev. 253(11), 1670–1681 (2009).  https://doi.org/10.1016/j.ccr.2009.02.019CrossRefGoogle Scholar
  12. 12.
    Serebryanskaya, T.V., Lyakhov, A.S., Ivashkevich, L.S., Schur, J., Frias, C., Prokop, A., Ott, I., Rubbiani, R., Wahrig, B., Ott, I., et al.: Gold(I) thiotetrazolates as thioredoxin reductase inhibitors and antiproliferative agents. Dalton Trans. 44(3), 1161–1169 (2015).  https://doi.org/10.1039/C4DT03105ACrossRefPubMedGoogle Scholar
  13. 13.
    Larabee, J.L., Hocker, J.R., Hanas, J.S.: Mechanisms of aurothiomalate-Cys2His2 zinc finger interactions. Chem. Res. Toxicol. 18(12), 1943–1954 (2005).  https://doi.org/10.1021/tx0501435CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Handel, M.L., DeFazio, A., Watts, C.K., Day, R.O., Sutherland, R.L.: Inhibition of DNA binding and transcriptional activity of a nuclear receptor transcription factor by aurothiomalate and other metal ions. Mol. Pharmacol. 40(5), 613–618 (1991)PubMedGoogle Scholar
  15. 15.
    Chertova, E.N., Kane, B.P., McGrath, C., Johnson, D.G., Sowder, R.C., Arthur, L.O., Henderson, L.E.: Probing the topography of HIV-1 nucleocapsid protein with the alkylating agent N-ethylmaleimide. Biochemistry 37(51), 17890–17897 (1998).  https://doi.org/10.1021/bi980907yCrossRefPubMedGoogle Scholar
  16. 16.
    Sechi, S., Chait, B.T.: Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Anal. Chem. 70(24), 5150–5158 (1998).  https://doi.org/10.1021/ac9806005CrossRefPubMedGoogle Scholar
  17. 17.
    Mendoza, V.L., Vachet, R.W.: Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom. Rev. 28(5), 785–815 (2009).  https://doi.org/10.1002/mas.20203CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shaw, C.F.: Gold-based therapeutic agents. Chem. Rev. 99(9), 2589–2600 (1999).  https://doi.org/10.1021/cr980431oCrossRefGoogle Scholar
  19. 19.
    Abbehausen, C., Peterson, E.J., De Paiva, R.E.F., Corbi, P.P., Formiga, A.L.B., Qu, Y., Farrell, N.P.: Gold(I)-phosphine-N-heterocycles: biological activity and specific (ligand) interactions on the C-terminal HIVNCp7 zinc finger. Inorg. Chem. 52(19), 11280–11287 (2013).  https://doi.org/10.1021/ic401535sCrossRefPubMedGoogle Scholar
  20. 20.
    Hu, W., Luo, Q., Wu, K., Li, X., Wang, F., Chen, Y., Ma, X., Wang, J., Liu, J., Xiong, S., et al.: The anticancer drug cisplatin can cross-link the interdomain zinc site on human albumin. Chem. Commun. 47(21), 6006 (2011).  https://doi.org/10.1039/c1cc11627dCrossRefGoogle Scholar
  21. 21.
    Maynard, A.T., Huang, M., Rice, W.G., Covell, D.G.: Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc. Natl. Acad. Sci. U. S. A. 95(20), 11578–11583 (1998).  https://doi.org/10.1073/pnas.95.20.11578CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Maynard, A.T., Covell, D.G.: Reactivity of zinc finger cores:? Analysis of protein packing and electrostatic screening. J. Am. Chem. Soc. 123(6), 1047–1058 (2001).  https://doi.org/10.1021/ja0011616CrossRefPubMedGoogle Scholar
  23. 23.
    Morcock, D.R., Thomas, J.A., Gagliardi, T.D., Gorelick, R.J., Roser, J.D., Chertova, E.N., Bess, J.W., Ott, D.E., Sattentau, Q.J., Frank, I., et al.: Elimination of retroviral infectivity by N-ethylmaleimide with preservation of functional envelope glycoproteins. J. Virol. 79(3), 1533–1542 (2005).  https://doi.org/10.1128/JVI.79.3.1533-1542.2005CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Levin, J.G., Guo, J., Rouzina, I., Musier-Forsyth, K., Rouzina, I., Musier-Forsyth, K.: Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog. Nucleic Acid Res. Mol. Biol. 80(05), 217–286 (2005).  https://doi.org/10.1016/S0079-6603(05)80006-6CrossRefPubMedGoogle Scholar
  25. 25.
    Mori, M., Kovalenko, L., Lyonnais, S., Antaki, D., Torbett, B.E., Botta, M., Mirambeau, G., Mély, Y.: Nucleocapsid protein: a desirable target for future therapies against HIV-1. Curr. Top. Microbiol. Immunol. 389, 53–92 (2015).  https://doi.org/10.1007/82_2015_433CrossRefPubMedGoogle Scholar
  26. 26.
    Garg, D., Torbett, B.E.: Advances in targeting nucleocapsid–nucleic acid interactions in HIV-1 therapy. Virus Res. 193, 135–143 (2014).  https://doi.org/10.1016/j.virusres.2014.07.004CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee, J., Jayathilaka, L.P., Gupta, S., Huang, J.-S., Lee, B.-S.: Gold ion-angiotensin peptide interaction by mass spectrometry. J. Am. Soc. Mass Spectrom. 23(5), 942–951 (2012).  https://doi.org/10.1007/s13361-011-0328-0CrossRefPubMedGoogle Scholar
  28. 28.
    Zou, J., Taylor, P., Dornan, J., Robinson, S., Walkinshaw, M., Sadler, P.: First crystal structure of a medicinally relevant gold protein complex: unexpected binding of [Au(PEt3)]+ to histidine. Angew. Chemie 39(16), 2931–2934 (2000).  https://doi.org/10.1002/1521-3773(20000818)39:16%3c2931:AID-ANIE2931%3e3.0.CO;2-WCrossRefGoogle Scholar
  29. 29.
    Franzman, M.A., Barrios, A.M.: Spectroscopic evidence for the formation of goldfingers. Inorg. Chem. 47(10), 3928–3930 (2008).  https://doi.org/10.1021/ic800157tCrossRefPubMedGoogle Scholar
  30. 30.
    Jacques, A., Lebrun, C., Casini, A., Kieffer, I., Proux, O., Latour, J.-M., Sénèque, O.: Reactivity of Cys 4 zinc finger domains with gold(III) complexes: insights into the formation of “gold fingers”. Inorg. Chem. 54(8), 4104–4113 (2015).  https://doi.org/10.1021/acs.inorgchem.5b00360CrossRefPubMedGoogle Scholar
  31. 31.
    Williams, J.P., Phillips, H.I.A., Campuzano, I., Sadler, P.J.: Shape changes induced by N-terminal platination of ubiquitin by cisplatin. J. Am. Soc. Mass Spectrom. 21(7), 1097–1106 (2010).  https://doi.org/10.1016/j.jasms.2010.02.012CrossRefPubMedGoogle Scholar
  32. 32.
    Williams, J.P., Brown, J.M., Campuzano, I., Sadler, P.J., Sadler, P.J., Clausen, H., Johnsen, A.H., Zubarev, R.A., Dawson, A., Aird, R.E., et al.: Identifying drug metallation sites on peptides using electron transfer dissociation (ETD), collision induced dissociation (CID) and ion mobility-mass spectrometry (IM-MS). Chem. Commun. 46(30), 5458 (2010).  https://doi.org/10.1039/c0cc00358aCrossRefGoogle Scholar
  33. 33.
    Murray, B.S., Menin, L., Scopelliti, R., Dyson, P.J.: Conformational control of anticancer activity: the application of arene-linked dinuclear ruthenium(II) organometallics. Chem. Sci. 5(6), 2536 (2014).  https://doi.org/10.1039/c4sc00116hCrossRefGoogle Scholar
  34. 34.
    Jurneczko, E., Cruickshank, F., Porrini, M., Clarke, D.J., Campuzano, I.D.G., Morris, M., Nikolova, P.V., Barran, P.E.: Probing the conformational diversity of cancer-associated mutations in p53 with ion-mobility mass spectrometry. Angew. Chemie Int. Ed. 52(16), 4370–4374 (2013).  https://doi.org/10.1002/anie.201210015CrossRefGoogle Scholar
  35. 35.
    Choi, D., Alshahrani, A.A., Vytla, Y., Deeconda, M., Serna, V.J., Saenz, R.F., Angel, L.A.: Redox activity and multiple copper(I) coordination of 2His-2Cys oligopeptide. J. Mass Spectrom. 50(2), 316–325 (2015).  https://doi.org/10.1002/jms.3530CrossRefPubMedGoogle Scholar
  36. 36.
    Papayannopoulos, I.A.: The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom. Rev. 14(1), 49–73 (1995).  https://doi.org/10.1002/mas.1280140104CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations