Advertisement

Au(I)-Phosphine Series Design

  • Raphael Enoque Ferraz de PaivaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Few works have reported the zinc ejecting capabilities of Au(I) compounds. Compounds of general structure [L-Au-A]n allow the modification of both the leaving ligand L and also the ancillary ligand A for fine-tuning the properties of the overall complex towards the desired biomolecular target. In this chapter we explore the basicity and steric hindrance of the phosphine as well as lability and donating properties of the co-ligand (N-heterocycle vs. Cl−) to design a series of Au(I)-phosphine complexes. This series of Au(I) compounds explores the analogy between the organic and the Lewis acid electrophiles, and we demonstrate that chemoselective auration is useful for probing the nucleocapsid topography. We also examined for comparison the “standard” gold-phosphine compound auranofin which contains a thiosugar co-ligand.

References

  1. 1.
    Quintal, S.M., dePaula, Q.A., Farrell, N.P.: Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 3(2), 121–139 (2011).  https://doi.org/10.1039/c0mt00070aCrossRefGoogle Scholar
  2. 2.
    Larabee, J.L., Hocker, J.R., Hanas, J.S.: Mechanisms of aurothiomalate-Cys2His2 zinc finger interactions. Chem. Res. Toxicol. 18(12), 1943–1954 (2005).  https://doi.org/10.1021/tx0501435CrossRefPubMedGoogle Scholar
  3. 3.
    Abbehausen, C., Peterson, E.J., De Paiva, R.E.F., Corbi, P.P., Formiga, A.L.B., Qu, Y., Farrell, N.P.: Gold(I)-phosphine-N-heterocycles: biological activity and specific (ligand) interactions on the C-terminal HIVNCp7 zinc finger. Inorg. Chem. 52(19), 11280–11287 (2013).  https://doi.org/10.1021/ic401535sCrossRefPubMedGoogle Scholar
  4. 4.
    Wurm, T., Mohamed Asiri, A., Hashmi, A.S.K.: NHC-Au(I) complexes: synthesis, activation, and application. In: N-Heterocyclic Carbenes, pp. 243–270. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2014)Google Scholar
  5. 5.
    Schwerdtfeger, P., Hermann, H.L., Schmidbaur, H.: Stability of the gold(I)–phosphine bond. A comparison with other group 11 elements. Inorg. Chem. 42(4), 1334–1342 (2003).  https://doi.org/10.1021/ic026098vCrossRefPubMedGoogle Scholar
  6. 6.
    Klug, A.: The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q. Rev. Biophys. 43(1), 1–21 (2010).  https://doi.org/10.1146/annurev-biochem-010909-095056CrossRefPubMedGoogle Scholar
  7. 7.
    Diakun, G.P., Fairall, L., Klug, A.: EXAFS study of the zinc-binding sites in the protein transcription factor IIIA. Nature 324(6098), 698–699 (1986).  https://doi.org/10.1038/324698a0CrossRefPubMedGoogle Scholar
  8. 8.
    Coleman, J.E.: Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61(1), 897–946 (1992).  https://doi.org/10.1146/annurev.bi.61.070192.004341CrossRefPubMedGoogle Scholar
  9. 9.
    De Luca, A., Hartinger, C.G., Dyson, P.J., Lo Bello, M., Casini, A.: A new target for gold(I) compounds: glutathione-S-transferase inhibition by auranofin. J. Inorg. Biochem. 119, 38–42 (2013).  https://doi.org/10.1016/j.jinorgbio.2012.08.006CrossRefPubMedGoogle Scholar
  10. 10.
    Peacock, A.F.A., Bullen, G.A., Gethings, L.A., Williams, J.P., Kriel, F.H., Coates, J.: Gold-phosphine binding to de novo designed coiled coil peptides. J. Inorg. Biochem. 117, 298–305 (2012).  https://doi.org/10.1016/j.jinorgbio.2012.05.010CrossRefPubMedGoogle Scholar
  11. 11.
    Gandin, V., Fernandes, A.P., Rigobello, M.P., Dani, B., Sorrentino, F., Tisato, F., Björnstedt, M., Bindoli, A., Sturaro, A., Rella, R., et al.: Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem. Pharmacol. 79(2), 90–101 (2010).  https://doi.org/10.1016/j.bcp.2009.07.023CrossRefPubMedGoogle Scholar
  12. 12.
    Karver, M.R., Krishnamurthy, D., Bottini, N., Barrios, A.M.: Gold(I) phosphine mediated selective inhibition of lymphoid tyrosine phosphatase. J. Inorg. Biochem. 104(3), 268–273 (2010).  https://doi.org/10.1016/j.jinorgbio.2009.12.012CrossRefPubMedGoogle Scholar
  13. 13.
    Karver, M.R., Krishnamurthy, D., Kulkarni, R.A., Bottini, N., Barrios, A.M.: Identifying potent, selective protein tyrosine phosphatase inhibitors from a library of Au(I) complexes. J. Med. Chem. 52(21), 6912–6918 (2009).  https://doi.org/10.1021/jm901220mCrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hormann-Arendt, A.L., Shaw, C.F.: Ligand-scrambling reactions of cyano(trialkyl/triarylphosphine) gold(I) complexes: examination of factors influencing the equilibrium constant. Inorg. Chem. 29(23), 4683–4687 (1990).  https://doi.org/10.1021/ic00348a019CrossRefGoogle Scholar
  15. 15.
    Xiao, J., Shaw, C.F.: Phosphorus-31 NMR studies of the formation of a (cysteine-34)(μ-thiolato)bis(gold(I) triethylphosphine) species of bovine serum albumin and a related model titration. Inorg. Chem. 31(18), 3706–3710 (1992).  https://doi.org/10.1021/ic00044a010CrossRefGoogle Scholar
  16. 16.
    Corbi, P.P., Quintão, F.A., Ferraresi, D.K.D., Lustri, W.R., Amaral, A.C., Massabni, A.C.: Chemical, spectroscopic characterization, and in vitro antibacterial studies of a new gold(I) complex with N-acetyl-L-cysteine. J. Coord. Chem. 63(8), 1390–1397 (2010).  https://doi.org/10.1080/00958971003782608CrossRefGoogle Scholar
  17. 17.
    Castiglione Morelli, M.A., Ostuni, A., Matassi, G., Minichino, C., Flagiello, A., Pucci, P., Bavoso, A.: Spectroscopic investigation of auranofin binding to zinc finger HIV-2 nucleocapsid peptides. Inorganica Chim. Acta 453, 330–338 (2016).  https://doi.org/10.1016/j.ica.2016.08.012CrossRefGoogle Scholar
  18. 18.
    Laskay, Ü.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A., Laskay, U.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A.: Gold finger formation studied by high-resolution mass spectrometry and in silico methods. Chem. Commun. 51(9), 1612–1615 (2015).  https://doi.org/10.1039/C4CC07490DCrossRefGoogle Scholar
  19. 19.
    Tolman, C.A.: Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev. 77(3), 313–348 (1977).  https://doi.org/10.1021/cr60307a002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations