Skip to main content

On the Hardness of Approximating Linearization of Scaffolds Sharing Repeated Contigs

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11183))

Included in the following conference series:

Abstract

Solutions to genome scaffolding problems can be represented as paths and cycles in a “solution graph”. However, when working with repetitions, such solution graph may contain branchings and they may not be uniquely convertible into sequences. Having introduced, in a previous work, various ways of extracting the unique parts of such solutions, we extend previously known NP-hardness results to the case that the solution graph is planar, bipartite, and subcubic, and show the APX-completeness in this case. We also provide some practical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness and satisfiability of bounded occurrence instances of SAT. Electronic Colloquium on Computational Complexity (ECCC), 10(022) (2003)

    Google Scholar 

  2. Biscotti, M.A., Olmo, E., Heslop-Harrison, J.S.: Repetitive DNA in eukaryotic genomes. Chromosome Res. 23(3), 415–420 (2015)

    Article  Google Scholar 

  3. Cameron, D.L., et al.: GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 27(12), 2050–2060 (2017)

    Article  Google Scholar 

  4. Chateau, A., Giroudeau, R.: A complexity and approximation framework for the maximization scaffolding problem. Theor. Comput. Sci. 595, 92–106 (2015). https://doi.org/10.1016/j.tcs.2015.06.023

    Article  MathSciNet  MATH  Google Scholar 

  5. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based on a bloom filter. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 236–248. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0_19

    Chapter  Google Scholar 

  6. Ekblom, R., Wolf, J.B.: A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl. 7(9), 1026–1042 (2014)

    Article  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  8. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  Google Scholar 

  9. Koch, P., Platzer, M., Downie, B.R.: RepARK-de novo creation of repeat libraries from whole-genome NGS reads. Nucleic Acids Res. 42(9), e80 (2014)

    Article  Google Scholar 

  10. Li, H., Durbin, R.: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5), 589–595 (2010)

    Article  Google Scholar 

  11. Li, H., et al.: The sequence alignment/map format and samtools. Bioinformatics 25(16), 2078–2079 (2009)

    Article  Google Scholar 

  12. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  Google Scholar 

  13. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 105, 41–72 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Mandric, I., Lindsay, J., Măndoiu, I.I., Zelikovsky, A.: Scaffolding algorithms. In: Măndoiu, I., Zelikovsky, A. (eds.) Computational Methods for Next Generation Sequencing Data Analysis, pp. 107–132. Wiley (2016). Chapter 5

    Google Scholar 

  15. Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T.L., Agarwala, R., Schäffer, A.A.: Database indexing for production megablast searches. Bioinformatics 24(16), 1757–1764 (2008). https://doi.org/10.1093/bioinformatics/btn322

    Article  Google Scholar 

  16. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  Google Scholar 

  17. Quail, M.A.: A tale of three next generation sequencing platforms: comparison of ion torrent, pacific biosciences and illumina miseq sequencers. BMC Genomics 13(1), 341 (2012)

    Article  Google Scholar 

  18. Tang, H.: Genome assembly, rearrangement, and repeats. Chem. Rev. 107(8), 3391–3406 (2007)

    Article  Google Scholar 

  19. Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing, 6–8 July 2001, Heraklion, Crete, Greece, pp. 453–461 (2001)

    Google Scholar 

  20. Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. BMC Bioinf. 16(Suppl 14), S2 (2015)

    Article  Google Scholar 

  21. Weller, M., Chateau, A., Giroudeau, R.: On the linearization of scaffolds sharing repeated contigs. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 509–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71147-8_38

    Chapter  Google Scholar 

  22. Weller, M., Chateau, A., Dallard, C., Giroudeau, R.: Scaffolding problems revisited: complexity, approximation and fixed parameter tractable algorithms, and some special cases. Algorithmica 80(6), 1771–1803 (2018)

    Article  MathSciNet  Google Scholar 

  23. Weller, M., Chateau, A., Giroudeau, R., Poss, M.: Scaffolding with repeated contigs using flow formulations (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Institut de Biologie Computationnelle (http://www.ibc-montpellier.fr/) (ANR Projet Investissements d’Avenir en bioinformatique IBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Davot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davot, T., Chateau, A., Giroudeau, R., Weller, M. (2018). On the Hardness of Approximating Linearization of Scaffolds Sharing Repeated Contigs. In: Blanchette, M., Ouangraoua, A. (eds) Comparative Genomics. RECOMB-CG 2018. Lecture Notes in Computer Science(), vol 11183. Springer, Cham. https://doi.org/10.1007/978-3-030-00834-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00834-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00833-8

  • Online ISBN: 978-3-030-00834-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics