Skip to main content

Reconstructing the History of Syntenies Through Super-Reconciliation

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2018)

Abstract

Classical gene and species tree reconciliation, used to infer the history of gene gain and loss explaining the evolution of gene families, assumes an independent evolution for each family. While this assumption is reasonable for genes that are far apart in the genome, it is clearly not suited for genes grouped in syntenic blocks, which are more plausibly the result of a concerted evolution. Here, we introduce the Super-Reconciliation model, that extends the traditional Duplication-Loss model to the reconciliation of a set of trees, accounting for segmental duplications and losses. From a complexity point of view, we show that the associated decision problem is NP-hard. We then give an exact exponential-time algorithm for this problem, assess its time efficiency on simulated datasets, and give a proof of concept on the opioid receptor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The program and simulations are available at:

    https://github.com/UdeM-LBIT/SuperReconciliation.

  2. 2.

    https://useast.ensembl.org/index.html.

References

  1. Abbasi, A., Grzeschik, K.: An insight into the phylogenetic history of hox linked gene families in vertebrates. BMC Evol. Biol. 7(1), 239 (2007)

    Article  Google Scholar 

  2. Aho, A., Yehoshua, S., Szymanski, T., Ullman, J.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)

    Article  MathSciNet  Google Scholar 

  3. Ajmal, W., Khan, H., Abbasi, A.: Phylogenetic investigation of human fgfr-bearing paralogons favors piecemeal duplication theory of vertebrate genome evolution. Mol. Phylogenet. Evol. 81, 49–60 (2014)

    Article  Google Scholar 

  4. Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous bayesian gene tree reconstruction and reconciliation analysis. Proc. Nat. Acad. Sci. USA 106(14), 57145719 (2009)

    Article  Google Scholar 

  5. Bansal, M., Alm, E., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), 283291 (2012). https://doi.org/10.1093/bioinformatics/bts225

    Article  Google Scholar 

  6. Bérard, S., Gallien, C., Boussau, B., Szollosi, G., Daubin, V., Tannier, E.: Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28(18), 382388 (2012)

    Article  Google Scholar 

  7. Brightwell, G., Winkler, P.: Counting linear extensions. Order 8(3), 225–242 (1991)

    Article  MathSciNet  Google Scholar 

  8. Constantinescu, M., Sankoff, D.: An efficient algorithm for supertrees. J. Classif. 12, 101–112 (1995)

    Article  Google Scholar 

  9. Dondi, R., Lafond, M., Scornavacca, C.: Reconciling multiple genes trees via segmental duplications and losses. WABI (2018, to appear)

    Google Scholar 

  10. Doyon, J., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs for phylogeny reconciliation. Briefings Bioinform. 12(5), 392400 (2011)

    Article  Google Scholar 

  11. Dreborg, S., Sundstrom, G., Larsson, T., Larhammar, D.: Evolution of vertebrate opioid receptors. Proc. Nat. Acad. Sci. USA 105(40), 1548715492 (2008)

    Article  Google Scholar 

  12. Duchemin, W.: Phylogeny of dependencies and dependencies of phylogenies in genes and genomes. Theses, Université de Lyon, Dec 2017. https://tel.archives-ouvertes.fr/tel-01779517

  13. Ferrier, D.: Evolution of homeobox gene clusters in animals:the giga-cluster and primary vs. secondary clustering. Frontiers in Ecology and Evolution 4(34) (2016)

    Google Scholar 

  14. Garcia-Fernàndez, J.: The genesis and evolution of homeobox gene clusters. Nat. Rev. Genet. 6, 881892 (2005)

    Article  Google Scholar 

  15. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28, 132–163 (1979)

    Article  Google Scholar 

  16. Hafeez, M., Shabbir, M., Altaf, F., Abbasi, A.: Phylogenomic analysis reveals ancient segmental duplications in the human genome. Mol. Phylogenet. Evol. 94, 95–100 (2016)

    Article  Google Scholar 

  17. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MathSciNet  Google Scholar 

  18. Thompson, J.D., Higgins, D., Gibson, T.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994)

    Article  Google Scholar 

  19. Kumar, S., Stecher, G., Tamura, K.: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 18701874 (2016)

    Article  Google Scholar 

  20. Lafond, M., Ouangraoua, A., El-Mabrouk, N.: Reconstructing a supergenetree minimizing reconciliation. BMC-Genomics 16, S4 (2015). special issue of RECOMB-CG 2015

    Google Scholar 

  21. Larsson, T., Olsson, F., Sundstrom, G., Lundin, L., Brenner, S., Venkatesh, B., Larhammar, D.: Early vertebrate chromosome duplications and the evolution of the neuropeptide y receptor gene regions. BMC Evol. Biol. 8, 184 (2008)

    Article  Google Scholar 

  22. Ng, M., Wormald, N.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math 69, 19–31 (1996)

    Article  MathSciNet  Google Scholar 

  23. Paszek, J., Gorecki, P.: Efficient algorithms for genomic duplication models. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017)

    Google Scholar 

  24. Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Comput. 23(2), 373–386 (1994)

    Article  MathSciNet  Google Scholar 

  25. Semple, C.: Reconstructing minimal rooted trees. Discrete Appl. Math. 127(3), 489–503 (2003)

    Article  MathSciNet  Google Scholar 

  26. Sjöstrand, J., Tofigh, A., Daubin, V., Arvestad, L., Sennblad, B., Lagergren, J.: A bayesian method for analyzing lateral gene transfer. Syst. Biol. 63(3), 409–420 (2014)

    Article  Google Scholar 

  27. Stevens, C.: The evolution of vertebrate opioid receptors. Front. Biosci. J. Virtual Libr. 14, 12471269 (2009)

    Google Scholar 

  28. Sundstrom, G., Dreborg, S., Larhammar, D.: Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS ONE 5(5) (2010)

    Google Scholar 

  29. Szöllősi, G., Tannier, E., Daubin, V., Boussau, B.: The inference of gene trees with species trees. Syst. Biol. 64(1), e42–e62 (2014)

    Article  Google Scholar 

  30. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. BiolBioinform. 8(2), 517–535 (2011). https://doi.org/10.1109/TCBB.2010.14

    Article  Google Scholar 

  31. Duchemin, W., et al.: DeCoSTAR: Reconstructing the ancestral organization of genes or genomes using reconciled phylogenies. Genome Biol. Evol. 9(5), 1312–1319 (2017)

    Article  Google Scholar 

  32. Zhang, L.: On Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. J. Comput. Biol. 4, 177–188 (1997)

    Article  Google Scholar 

  33. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciiation events on a gene tree. Bioinformatics 17, 821–828 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia El-Mabrouk .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2690 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delabre, M. et al. (2018). Reconstructing the History of Syntenies Through Super-Reconciliation. In: Blanchette, M., Ouangraoua, A. (eds) Comparative Genomics. RECOMB-CG 2018. Lecture Notes in Computer Science(), vol 11183. Springer, Cham. https://doi.org/10.1007/978-3-030-00834-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00834-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00833-8

  • Online ISBN: 978-3-030-00834-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics