Skip to main content

Framework for Human Activity Recognition on Smartphones and Smartwatches

  • Conference paper
  • First Online:
ICT Innovations 2018. Engineering and Life Sciences (ICT 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 940))

Included in the following conference series:

Abstract

As activity recognition becomes an integral part of many mobile applications, its requirement for lightweight and accurate techniques leads to development of new tools and algorithms. This paper has three main contributions: (1) to design an architecture for automatic data collection, thus reducing the time and cost and making the process of developing new activity recognition techniques convenient for software developers as well as for the end users; (2) to develop new algorithm for activity recognition based on Long Short Term Memory networks, which is able to learn features from raw accelerometer data, completely bypassing the process of generating hand-crafted features; and (3) to investigate which combinations of smartphone and smartwatch sensors gives the best results for the activity recognition problem, i.e. to analyze if the accuracy benefits of those combinations are greater than the additional costs for combining those sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In 2010 23rd International Conference on Architecture of Computing Systems (ARCS), pp. 1–10. VDE (2010)

    Google Scholar 

  2. Risteska Stojkoska, B., Trivodaliev, K., Davcev, D.: Internet of things framework for home care systems. Wireless Commun. Mobile Comput. 2017 (2017)

    Google Scholar 

  3. Weinstein, A.R., et al.: The joint effects of physical activity and body mass index on coronary heart disease risk in women. Arch. Intern. Med. 168(8), 884–890 (2008)

    Article  Google Scholar 

  4. Hu, G., Barengo, N.C., Tuomilehto, J., Lakka, T.A., Nissinen, A., Jousilahti, P.: Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland. Hypertension 43(1), 25–30 (2004)

    Article  Google Scholar 

  5. Haapanen, N., Miilunpalo, S., Vuori, I., Oja, P., Pasanen, M.: Association of leisure time physical activity with the risk of coronary heart disease, hypertension and diabetes in middle-aged men and women. Int. J. Epidemiol. 26(4), 739–747 (1997)

    Article  Google Scholar 

  6. Jia, Y.: Diatetic and exercise therapy against diabetes mellitus. In: ICINIS 2009. Second International Conference on Intelligent Networks and Intelligent Systems, 2009, pp. 693–696. IEEE (2009)

    Google Scholar 

  7. Zdravevski, E., Stojkoska, B.R., Standl, M., Schulz, H.: Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions. PLoS ONE 12(9), e0184216 (2017)

    Article  Google Scholar 

  8. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  9. Milenkoski, M., Trivodaliev, K., Kalajdziski, S., Jovanov, M., Stojkoska, B.R.: Real time human activity recognition on smartphones using LSTM Networks. In: MIPRO (2018)

    Google Scholar 

  10. Stojkoska, B.R., Nikolovski, Z.: Data compression for energy efficient IoT solutions. In: 2017 25th Telecommunication Forum (TELFOR), pp. 1–4. IEEE (2017)

    Google Scholar 

  11. Stojkoska, B.R., Trivodaliev, K.: Enabling internet of things for smart homes through fog computing. In: 2017 25th Telecommunication Forum (TELFOR), pp. 1–4. IEEE (2017)

    Google Scholar 

  12. Stojkoska, B.L.R., Trivodaliev, K.V.: A review of internet of things for smart home: challenges and solutions. J. Cleaner Prod. 140, 1454–1464 (2017)

    Article  Google Scholar 

  13. Pollack, M.E., et al.: Autominder: an intelligent cognitive orthotic system for people with memory impairment. Robot. Auton. Syst. 44(3), 273–282 (2003)

    Article  Google Scholar 

  14. Yin, J., Yang, Q., Pan, J.J.: Sensor-based abnormal human-activity detection. IEEE Trans. Knowl. Data Eng. 20(8), 1082–1090 (2008)

    Article  Google Scholar 

  15. Long, X., Yin, B., Aarts, R.M.: Single-accelerometer-based daily physical activity classification. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, EMBC 2009, pp. 6107–6110. IEEE (2009)

    Google Scholar 

  16. Official website for Nike + . http://www.nikeplus.com/

  17. Kim, E., Helal, S., Cook, D.: Human activity recognition and pattern discovery. IEEE Pervasive Comput. 9(1), 48 (2010)

    Article  Google Scholar 

  18. Liu, X., Liu, L., Simske, S. J., Liu, J.: Human daily activity recognition for healthcare using wearable and visual sensing data. In: IEEE International Conference on Healthcare Informatics (ICHI), 2016, pp. 24–31. IEEE (2016)

    Google Scholar 

  19. Yang, J.Y., Wang, J.S., Chen, Y.P.: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers. Pattern Recognit. Lett. 29(16), 2213–2220 (2008)

    Article  Google Scholar 

  20. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newslett. 12(2), 74–82 (2011)

    Article  Google Scholar 

  21. Zeng, M., et al.: Convolutional neural networks for human activity recognition using mobile sensors. In: 2014 6th International Conference on Mobile Computing, Applications and Services (MobiCASE), pp. 197–205. IEEE (2014)

    Google Scholar 

  22. Murad, A., Pyun, J.Y.: Deep recurrent neural networks for human activity recognition. Sensors 17(11), 2556 (2017)

    Article  Google Scholar 

  23. Anguita, D., Ghio, A., Oneto, L., Llanas Parra, F.X., Reyes Ortiz, J.L.: Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 19(9), 1295–1314 (2013)

    Google Scholar 

  24. Gordon, D., Czerny, J., Miyaki, T., Beigl, M.: Energy-efficient activity recognition using prediction. In: 2012 16th International Symposium on Wearable Computers (ISWC), pp. 29–36. IEEE, June 2012

    Google Scholar 

  25. Oneto, L., Ortiz, J.L., Anguita, D.: Constraint-aware data analysis on mobile devices: an application to human activity recognition on smartphones. In: Adaptive Mobile Computing, pp. 127–149 (2017)

    Google Scholar 

  26. Stisen, A., et al.: Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition. In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys 2015), Seoul, Korea (2015)

    Google Scholar 

  27. UCL link to the dataset. https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition

  28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  29. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  30. Sainath, T.N., Vinyals, O., Senior, A., Sak, H.: Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (Icassp), pp. 4580–4584. IEEE (2015)

    Google Scholar 

  31. McGraw, I., et al.: Personalized speech recognition on mobile devices. In: 2016 IEEE International Conference on Acoustics, Speech And Signal Processing (ICASSP), pp. 5955–5959. IEEE (2016)

    Google Scholar 

  32. Alsharif, O., Ouyang, T., Beaufays, F., Zhai, S., Breuel, T., Schalkwyk, J.: Long short term memory neural network for keyboard gesture decoding. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2076–2080. IEEE (2015)

    Google Scholar 

  33. TensorFlow Homepage. https://www.tensorflow.org/

Download references

Acknowledgment

This work was partially financed by the Faculty of Computer Science and Engineering, University “Ss. Cyril and Methodius”, Skopje, Macedonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Risteska Stojkoska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitrevski, B., Petreski, V., Gjoreski, M., Stojkoska, B.R. (2018). Framework for Human Activity Recognition on Smartphones and Smartwatches. In: Kalajdziski, S., Ackovska, N. (eds) ICT Innovations 2018. Engineering and Life Sciences. ICT 2018. Communications in Computer and Information Science, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-00825-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00825-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00824-6

  • Online ISBN: 978-3-030-00825-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics