Skip to main content

Determination of the Cooling Medium Composition in an Indirect Cooling System

  • Conference paper
  • First Online:
Energy and Thermal Management, Air-Conditioning, and Waste Heat Utilization (ETA 2018)

Abstract

In recent years, strict exhaust emission legislation alongside the demand for high efficiency and low fuel consumption have caused an enormous effort in research and development in the automotive industry. As far as thermal management is concerned, a growing number of on-demand temperature control strategies is recognized. While direct heat exchanging devices offer limited possibilities for such approaches, indirect cooling systems facilitate their implementation to a large extent. This allows to adjust the temperature of the various components at or close to the vehicle’s engine, independent of the current driving situation. The aforementioned temperature control strategies usually rely on the knowledge of the state variables. The latter are expressed by means of data supplied by the vehicle’s ECU and the fluid properties. In particular, the cooling medium’s composition has a major impact on the performance of the overall cooling system. This is due to the strong dependence of the viscosity and the heat capacity on the concentration c of ethylene glycol in the coolant mixture. On the other hand, the composition of the cooling mixture may be influenced by the vehicle’s owner by adding water or glycol to the cooling circuit. This may destabilize the temperature control which, in the worst case, may cause damage to the vehicle components. Assuming a binary mixture of water and ethylene glycol we suggest an approach which allows to determine c by means of quantities which are supplied by the vehicle’s ECU. To this end, the dimensionless temperature change of the respective heat exchanger is expressed by means of the heat capacity flow of the cooling medium. This expression can be solved for the concentration either by means of characteristic maps or analytically. Exemplifying both these approaches on the basis of vehicle measurements, we discuss possible applications such as on-board diagnosis and adaptive control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heuck, M.: Modellgestütztes Luftsystem-Management für einen Pkw-Dieselmotor mit Hoch- und Niederdruck-Abgasrückführsystemen. Shaker, Aachen (2009)

    Google Scholar 

  2. Canova, M., Midlam-Mohler, S., Soliman, A., Guezennec, Y., Rizzoni, G.: Control-Oriented Modeling of NOx Aftertreatment Systems, SAE Technical Paper 2007-24-0106 (2007)

    Google Scholar 

  3. Presti, M., Pace, L., Poggio, L., Rossi, V.: Cold Start Thermal Management with Electrically Heated Catalyst: A Way to Lower Fuel Consumption, SAE Technical Paper 2013-24-0158 (2013)

    Google Scholar 

  4. Käppner, C., Fritzsche, J., Gonzalez, N.G., Lange, H.: Hybrid-optimized engine cooling concept. In: Junior C., Jänsch, D., Dingel, O. (eds.) Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, ETA 2016. Springer, Cham (2017)

    Google Scholar 

  5. Pan, D., Xu, S., Lin, C., Chang, G.: Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review, SAE Technical Paper 2016-01-1204 (2016)

    Google Scholar 

  6. Havlik, F., Hofmann, P.: Restwärmenutzung im Fahrzeug durch thermochemische Energiespeicher—Residual Heat Utilisation in Vehicles by Thermochemical Energy Storage, FVV Frühjahrstagung 247, Bad Neuenahr (2018)

    Google Scholar 

  7. Cortona, E., Onder, C.: Engine Thermal Management with Electric Cooling Pump, SAE Technical Paper 2000-01-0965 (2000)

    Google Scholar 

  8. Wagner, J.R., Ghone, M., Dawson, D.M., Marotta, E.: Coolant Flow Control Strategies for Automotive Thermal Management Systems, SAE Technical Paper 2002-01-0713 (2002)

    Google Scholar 

  9. Wagner, J.R., Srinivasan, V., Dawson, D.M., Marotta, E.E.: Smart Thermostat and Coolant Pump Control for Engine Thermal Management Systems, SAE Technical Paper 2003-01-0272 (2003)

    Google Scholar 

  10. Setlur, P., Wagner, J.R., Dawson, D.M., Marotta, E.E.: An advanced engine thermal management system: nonlinear control and test. IEEE/ASME Trans. Mechatron. 10(2), 210 (2005)

    Article  Google Scholar 

  11. Salah, M.H., Mitchell, T.H., Wagner, J.R., Dawson, M.D.: Nonlinear-control strategy for advanced vehicle thermal-management systems. IEEE Trans. Veh. Tech. 57(1), 127 (2008)

    Article  Google Scholar 

  12. Castiglione, T., Pizzonia, F., Bova, S.: A novel cooling system control strategy for internal combustion engines. SAE Int. J. Mater. Manuf. 9(2), 294 (2016)

    Article  Google Scholar 

  13. Schröder, C., Petr, P., Gräber, M., Köhler, J.: Nichtlineare modellbasierte prädiktive Regelung der Betriebsstrategie in Hybridfahrzeugen. In: Steinberg, P. (ed.) Wärmemanagement des Kraftfahrzeugs IX, Renningen (2014)

    Google Scholar 

  14. Roetzel, W., Xuan, Y.: Dynamic Behaviour of Heat Exchangers, vol. 3. WIT Press/Computational Mechanics Publications, Boston, Southampton (1998)

    MATH  Google Scholar 

  15. Herzog, A., Pelka, C., Skorupa, F.: Analytical description of thermal control circuits in vehicles. In: Junior C., Jänsch, D., Dingel, O. (eds.) Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, ETA 2016. Springer, Cham (2017)

    Google Scholar 

  16. VDI Heat Atlas, 2nd edn. Verein Deutscher Ingenieure VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen. Springer, Heidelberg (2010)

    Google Scholar 

  17. Herzog, A., Weiss, R., Skorupa, F.: Verfahren zur Ermittlung einer Kühlmittelkonzentration, Patentschrift, DE 10 2016 124 652 B3 (2018)

    Google Scholar 

  18. Herzog, A., Skorupa, F., Meinecke, R., Frase, R.: Thermal management in the air intake system of combustion engines. MTZ Worldwide 75(5), 24–29 (2014)

    Article  Google Scholar 

  19. For a detailed discussion of the determination of \(\Gamma _1\), we refer to Refs. [1,15] and references therein

    Google Scholar 

  20. Unambiguous outliers have been removed from the dynamical data set

    Google Scholar 

  21. Rötzel, W., Spang, B.: Analytisches Verfahren zur thermischen Berechnung mehrgängiger Rohrbündelwämeübertrager, Fortschr.-Ber. VDI, vol. 19, p. 18. VDI-Verlag, Düsseldorf (1987)

    Google Scholar 

  22. Rötzel, W.: Spang B: thermal calculation of multipass shell and tube heat exchangers. Chem. Eng. Res. Des. 67, 115 (1989)

    Google Scholar 

  23. The analytical model is derived from the same data sets as used for the calibration of the characteristic map

    Google Scholar 

  24. Zwillinger, D., Moll, V. (eds.): Gradshteyn and Ryzhik’s Table of Integrals, Series, and Products, 8th edn. Academic Press, Elsevier, Waltham, San Diego, London, Oxford (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Herzog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herzog, A., Pelka, C., Weiss, R., Skorupa, F. (2019). Determination of the Cooling Medium Composition in an Indirect Cooling System. In: Junior, C., Dingel, O. (eds) Energy and Thermal Management, Air-Conditioning, and Waste Heat Utilization. ETA 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-00819-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00819-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00818-5

  • Online ISBN: 978-3-030-00819-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics