Skip to main content

Thermal High Performance Storages for Use in Vehicle Applications

  • Conference paper
  • First Online:

Abstract

To overcome the restrictions on electric vehicles ranges on winter term conditions, due to the heating demand of the interior, the use of a Thermal High Performance Storage with metallic Phase Change Materials is one possible solution. A new storage concept, using a so called Heat Transport System, enabling the heat transfer from the storage to a vehicles cooling fluid by evaporation and condensation of a working fluid within a closed circle, is introduced in this study. The influence of the storage on an electric vehicles range is exemplary shown for DLR’s Urban Modular Vehicle Concept for a motorway cycle by theoretical investigations. An increase of range by 36,3 km resp. 18,4% for an ambient temperature of –10 °C and 46 km resp. 26,7% for an ambient temperature of –20 °C could be reached. The energy densities of the designed storages reach values of more than 220 Wh/kg resp. more than 310 Wh/l. The cost estimations for those storage systems are approx. 445 € resp. 660 €. A comparison between the thermal energy storage and a conventional heating system consisting out of a PTC-Heater and a battery show, that the conventional heating system has a mass which is about two thirds higher, a volume which is more than one third higher and a quadrupled price compared to the thermal energy storage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kuper, C., Hoh, M., Houchin-Miller, G., Fuhr, J.: Thermal management of hybrid vehicle battery systems. In: EVS, vol. 24, Stavanger, Norway (2009)

    Google Scholar 

  2. Jung, M., Kemle, A., Strauss, T., Wawzyniak, M.: Innenraumheizung von Hybrid- und Elektrofahrzeugen, ATZ, pp. 396–401, May 2011

    Article  Google Scholar 

  3. Pischinger, S., Genender, P., Klopstein, S., Hemkemeyer, D.: Aufgaben beim Thermomanagement von Hybrid- und Elektrofahrzeugen, ATZ, pp. 54–59, April 2014

    Article  Google Scholar 

  4. Grossmann, H.: Pkw – Klimatisierung – Physikalische Grundlagen und technische Umsetzung. Springer, Heidelberg (2013)

    Google Scholar 

  5. Kraft, W., Altstedde, M.K.: Use of metallic Phase Change Materials (mPCM) for heat storage in electric- and hybrid vehicles. In: The 6th Hybrid and Electric Vehicle Conference, London, (2016)

    Google Scholar 

  6. Altstedde, M.K., Kraft, W.: Thermohybrid heat storage systems. In: 1st ETA Conference - Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, Berlin, (2016)

    Google Scholar 

  7. Altstedde, M.K., Kraft, W.: Metallische Latentwärmespeicher - Der innovative Energiespeicher für die Elektromobilität. In: 4. VDI Fachkonferenz - Thermomanagement für elektromotorisch angetriebene PKW, Stuttgart (2015)

    Google Scholar 

  8. Kraft, W., Altstedde, M.K., Yildirim, K.-E., Kainz, T.: DuoTherm - Ein neuartiges thermisches Energiespeichersystem am Beispiel batterieelektrischer Stadtbusse. In: VDI Wissensforum - Thermomanagement in elektromotorische angetriebenen PKW, Leinfelden-Echterdingen (2017)

    Google Scholar 

  9. Altstedde, M.K., Kraft, W.: DuoTherm - a novel thermal energy storage system for the usage in electric and hybrid vehicles. In: SAE 2017 Thermal Management Systems Symposium, Plymouth, Michigan (2017)

    Google Scholar 

  10. Forschungsvereinigung Automobiltechnik (FAT), “Klimatische Daten und PKW-Nutzung - Klimadaten und Nutzungsverhalten zu Auslegung, Versuch und Simulation an Kraftfahrzeug-Kälte-/ Heizanlagen in Europa, USA, China und Indien,” VDA - Verband der Automobilindustrie, Frankfurt (2009)

    Google Scholar 

  11. Geringer, B., Tober, W.: “Batterieelektrische Fahrzeuge in der Praxis,” Österreichischer Verein für Kraftfahrzeugtechnik - ÖKV, Wien (2012)

    Google Scholar 

  12. Münster, M., Schäffer, M., Kopp, G., Friedrich, H.: Modulare Karosseriebauweise für ein Stadt-Elektrofahrzeug, ATZ, May 2017

    Google Scholar 

  13. Vohrer, S., Münster, M., Krischer, M., Kopp, G., Kopp, G., Friedrich, H.E.: DLR next generation vehicle concepts - urban - regional – interurban. In: Stuttgarter Symposium, Stuttgart (2018)

    Google Scholar 

  14. Deutsches Zentrum für Luft- und Raumfahrt - Verkehr, “Urban Modular Vehicle (UMV)”. https://verkehrsforschung.dlr.de/de/projekte/ngc-umv. Accessed 17 Aug 2018

  15. DIN 1946-3, Raumlufttechnik - Teil 3: Klimatisierung von Personenkraftwagen und Lastkraftwagen, Berlin: Deutsches Institut für Normung (2006)

    Google Scholar 

  16. Arbeitsmedizin, B.F.A.U.: “Heiße Medien/Oberflächen”. https://www.baua.de/DE/Themen/Arbeitsgestaltung-im-Betrieb/Gefaehrdungsbeurteilung/Expertenwissen/Thermische-Gefaehrdungen/Heisse-Medien/Heisse-Medien_dossier.html?pos=2. Accessed 17 Aug 2018

  17. Weustenfeld, T.: Heiz- und Kühlkonzept für ein batterieelektrisches Fahrzeug basierend auf Sekundärkreisläufen, Braunschweig: Cuvillier (2017)

    Google Scholar 

  18. Homann, G.: Energieeffizientes Heizen eines E-Fahrzeugs, Wolfsburg: Dissertation TU Braunschweig (2015)

    Google Scholar 

  19. Winter, M.: “Quo Vadis Batterietechnologie?” In: Batterieforum Deutschland, vol. 3, Berlin (2015)

    Google Scholar 

  20. Idaho Natrional Laboratory, Measurements on energy consumption of battery electric vehicles, Idaho Falls: Idaho National Laboratory, 2011–2015

    Google Scholar 

  21. Korthauer, R.: Handbuch Lithium-Ionen-Batterien. Springer Verlag, Heidelberg (2013)

    Book  Google Scholar 

  22. Schüppel, F.: Optimierung des Heiz- und Klimakonzepts zur Reduktion der Wärme- und Kälteleistung im Fahrzeug. Cuvillier Verlag, Berlin (2015)

    Google Scholar 

  23. Chediak, M.: The Latest Bull Case for Electric Cars: the Cheapest Batteries Ever, Bloomberg, 5 December 2017. https://www.bloomberg.com/news/articles/2017-12-05/latest-bull-case-for-electric-cars-the-cheapest-batteries-ever. Accessed 17 July 2018

  24. UOC: Scientists, Accelerating US Leadership in Electric Vehicles, Cambridge, MA (2017)

    Google Scholar 

  25. Glaser, T.: Techno-ökonomische Analyse eines thermischen Energiespeichers für elektrifizierte Fahrzeugkonzepte. Hochschule Aalen, Stuttgart (2017)

    Google Scholar 

  26. Knote, A.: zur Standardisierung und Zielkosten für Elektrobusse. Fraunhofer IVI, Dresden (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Kraft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kraft, W., Jilg, V., Klein Altstedde, M., Lanz, T., Vetter, P., Schwarz, D. (2019). Thermal High Performance Storages for Use in Vehicle Applications. In: Junior, C., Dingel, O. (eds) Energy and Thermal Management, Air-Conditioning, and Waste Heat Utilization. ETA 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-00819-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00819-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00818-5

  • Online ISBN: 978-3-030-00819-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics