Skip to main content

Glutamate Uptake by Astrocytic Transporters

  • Chapter
  • First Online:
Computational Glioscience

Abstract

Astrocytes express glutamate transporters at high density at perisynaptic processes which can tightly control extracellular glutamate levels in proximity of postsynaptic receptors with the potential to modulate functional neuronal activity. Glutamate uptake by these transporters also closely depends on activity-dependent extracellular ion concentrations and may also be regulated by the astrocyte’s intracellular calcium. On the other hand, intracellular \(\mathrm{Ca}^{2+}\) dynamics in the astrocyte too can be modulated by glutamate uptake, with potential for functionally relevant interactions with neural activity. Here, we introduce original modeling arguments to study functional implications of glutamate uptake by astrocytes both on their physiology and on that of neurons. In the first case, we consider the contribution of \(\mathrm{{Na^+}}\) and \(\mathrm{{K^+}}\) homeostasis to astrocytic glutamate uptake, revealing that intracellular anisotropy could account for spatial segregation of transporter- versus receptor-mediated calcium signaling pathways. In the second case, we study how regulation of extracellular glutamate levels by astrocytic transporters could affect tuning responses of primary sensory areas, linking our analysis to experimental observations in the ferret’s primary visual cortex by Schummers et al. (2008, Science 320:1638). We conclude that glutamate uptake by astrocytes can modulate function of neuronal circuits in multiple ways that may look subtle at individual synaptic contacts, but at network level, lead instead to functionally relevant changes in neuronal tuning and stimulus discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can simplistically think of an astrocyte as a cylindrical cell of radius r and length l with a concentric ER cylinder of radius \(r_\mathrm {ER}\). In this fashion, the two cylinders respectively have volumes \(\Lambda = \pi r^2 h\) and \(\Lambda _\mathrm {ER} = \pi r_\mathrm {ER}^2 h\). Defining \(\rho \equiv \Lambda _\mathrm {ER}/\Lambda \), then it must be \(r_\mathrm {ER} = \sqrt{\rho }\,r\). In the assumption that all relevant fluxes in our analysis are through the compartment’s lateral surface, the area of this latter for the ER cylinder equals the area of the whole cell cylinder rescaled by \(\sqrt{\rho }\). In astrocytic processes, \(\rho \) can be expressed as a function of \(\varsigma _A\) whereby \(\rho \approx 0.15 \exp (-0.55\times 10^{6}\varsigma _A^{2.32})\) (Patrushev et al. 2013). Moreover \(\rho \) can also be expressed in terms of ER-to-cytosol volume ratio (\(\rho _A\) in the G-ChI model in Chap. 5), as \(\rho = \rho _A/(1+\rho _A)\).

Abbreviations

AMPA(AMPAR):

\(\upalpha \)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (receptor)

CICR:

\(\mathrm{Ca}^{2+}\)-induced \(\mathrm{Ca}^{2+}\) release

EAAT:

excitatory amino acid transporters

EPSC:

excitatory postsynaptic current

\(\mathrm{{GABA}}\) :

\(\upgamma \)-aminobutyric acid

GABAR:

\(\mathrm{{GABA_A}}\) receptor

GLAST:

glutamate aspartate transporter

GLT1:

type 1 glutamate transporter

HWHM:

half width at half maximum

mGluR:

metabotropic glutamate receptor

IP\(_3\)R:

Inositol 1,4,5-trisphosphate receptor

NCX:

Na\(^+\)/Ca\(^{2+}\)exchanger

NKP:

Na\(^+\)/K\(^{+}\)ATPase

NMDA (NMDAR):

N-Methyl-d-aspartate (receptor)

TBOA:

textscdl-threo-\(\beta \)-benzyloxyaspartate

V1:

primary visual cortex

References

  • Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allam SL, Ghaderi VS, Bouteiller J-MC, Legendre A, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW (2012) A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbour B (2001) An evaluation of synapse independence. J Neurosci 21(20):7969–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbour B, Keller BU, Llano I, Marty A (1994) Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12(6):1331–1343

    Article  CAS  PubMed  Google Scholar 

  • Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19(2):182–189

    CAS  PubMed  Google Scholar 

  • Benediktsson AM, Marrs GS, Tu JC, Worley PF, Rothstein JD, Bergles DE, Dailey ME (2012) Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia 60(2):175–188

    Article  PubMed  Google Scholar 

  • Bentzen NCK, Zhabotinsky AM, Laugesen JL (2009) Modeling of glutamate-induced dynamical patterns. Int J Neural Syst 19(6):395–407

    Article  CAS  PubMed  Google Scholar 

  • Bergles DE, Tzingounis AV, Jahr CE (2002) Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J Neurosci 22(23):10153–10162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertschinger N, Natschläger T (2004) Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput 16(7):1413–1436

    Article  PubMed  Google Scholar 

  • Billups B, Rossi D, Attwell D (1996) Anion conductance behavior of the glutamate uptake carrier in salamander retinal glial cells. J Neurosci 16(21):6722–6731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein MP, Santiago EM (1977) Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J 20(1):79–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein MP, Blaustein MP, Lederer WJ, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79(3):763–854

    Article  CAS  PubMed  Google Scholar 

  • Bøttger P, Doganli C, Lykke-Hartmann K (2012) Migraine- and dystonia-related disease-mutations of Na +/K +-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 36(2):855–871

    Article  PubMed  CAS  Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208

    Article  CAS  PubMed  Google Scholar 

  • Campbell SL, Hablitz JJ (2004) Glutamate transporters regulate excitability in local networks in rat neocortex. Neuroscience 127(3):625–635

    Article  CAS  PubMed  Google Scholar 

  • Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19(5):163–171

    Article  CAS  PubMed  Google Scholar 

  • Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258(5087):1498–1501

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuronscience: computational and mathematical modeling of neural systems. The MIT Press, Cambridge, Massachusetts, London, England

    Google Scholar 

  • De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plasticity, p 7607924

    Google Scholar 

  • De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009) Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. J Biol Phys 35(4):383–411

    PubMed  PubMed Central  Google Scholar 

  • De Pittà M, Brunel N, Volterra A (2015) Astrocytes: orchestrating synaptic plasticity? Neuroscience 323

    Google Scholar 

  • Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81(4):1531–1547

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1(3):195–230

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I (eds) Methods neuronal model, 2nd edn. MIT Press, Cambridge, pp 1–25

    Google Scholar 

  • Diamond JS (2001) Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J Neurosci 21(21):8328–8338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond JS (2005) Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J Neurosci 25(11):2906–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divito CB, Underhill SM (2014) Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 73(1):172–180

    Article  CAS  PubMed  Google Scholar 

  • Drejer J, Larsson O, Schousboe A (1982) Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp Brain Res 47(2):259–269

    Article  CAS  PubMed  Google Scholar 

  • Drejer J, Larsson OM, Schousboe A (1990) Characterization of glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp Brain Res 47, 167–177

    Google Scholar 

  • Efraimidis P, Spirakis P (2008) Weighted random sampling. In: Kao M-Y (ed) Encyclopedia of Algorithms. Springer, US, pp 1024–1027

    Chapter  Google Scholar 

  • Estrada-Sánchez AM, Rebec GV (2012) Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington’s disease: interactions between neurons and astrocytes. Basal Ganglia 2(2):57–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiacco TA, McCarthy KD (2018) Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci 38(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freche D, Pannasch U, Rouach N, Holcman D (2011) Synapse geometry and receptor dynamics modulate synaptic strength. PLoS One 6(10)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, Gundersen V, Holmseth S, Lehre KP, Ullensvang K, Wojewodzic M, Zhou Y, Attwell D, Danbolt NC (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157(1):80–94

    Article  CAS  PubMed  Google Scholar 

  • Geering K (2008) Functional roles of Na. K-ATPase subunits. Curr Opin Nephrol Hypertens 17(5):526–532

    Article  CAS  PubMed  Google Scholar 

  • Genoud C, Quairiaux C, Steiner P, Hirling H, Welker E, Knott GW (2006) Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol 4(11):e343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldman WF, Yarowsky PJ, Juhaszova M, Krueger BK, Blaustein MP (1994) Sodium/calcium exchange in rat cortical astrocytes. J Neurosci 14(10):5834–5843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovina VA (1997) Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science (80-.) 275(5306):1643–1648

    Article  CAS  PubMed  Google Scholar 

  • Goubard V, Fino E, Venance L (2011) Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing. J Physiol 589(Pt 9):2301–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greget R, Pernot F, Bouteiller J-MC, Ghaderi VS, Allam SL, Keller AF, Ambert N, Legendre A, Sarmis M, Haeberle O, Faupel M, Bischoff S, Berger TW, Baudry M (2011) Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission. PLoS One 6(12):e28380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewer C, Gameiro A, Zhang Z, Tao Z, Braams S, Rauen T (2008) Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 60(9):609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19(22):10082–10097

    Article  PubMed  PubMed Central  Google Scholar 

  • Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26(35):8881–8891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassel B, Tessler S, Faull RLM, Emson PC (2008) Glutamate uptake is reduced in prefrontal cortex in Huntingtons disease. Neurochem Res 33(2):232–237

    Article  CAS  PubMed  Google Scholar 

  • Haugeto Ø, Ullensvang K, Levy LM, Chaudhry FA, Honoré T, Nielsen M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271(44):27715–27722

    Article  CAS  PubMed  Google Scholar 

  • Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27(36):9736–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holcman D, Schuss Z (2014) Time scale of diffusion in molecular and cellular biology. J Phys A 47(17):173001

    Article  CAS  Google Scholar 

  • Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32(17):6000–6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YH, Sinha SR, Tanaka K, Rothstein JD, Bergles DE (2004) Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J Neurosci 24(19):4551–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illarionava NB, Brismar H, Aperia A, Gunnarson E (2014) Role of Na, K-ATPase a1 and a2 isoforms in the support of astrocyte glutamate uptake. PLoS One 9(6)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Scanziani M, Gähwiler BH, Gerber U (1999) Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci U S A 96(15):8733–8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarzylo LA, Man H-Y (2012) Parasynaptic NMDA receptor signaling couples neuronal glutamate transporter function to AMPA receptor synaptic distribution and stability. J Neurosci 32(7):2552–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John CS, Sypek EI, Carlezon WA, Cohen BM, Öngür D, Bechtholt AJ (2015) Blockade of the GLT-1 transporter in the central nucleus of the Amygdala induces both anxiety and depressive-like symptoms. Neuropsychopharmacology 40(7):1700–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanner BI (2006) Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol 213(2):89–100

    Article  CAS  PubMed  Google Scholar 

  • Kelly T, Kafitz KW, Roderigo C, Rose CR (2009) Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57(9):921–934

    Article  PubMed  Google Scholar 

  • Koester HJ, Johnston D (2005) Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308(5723):863–866

    Article  CAS  PubMed  Google Scholar 

  • Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18(21):8751–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12(2):635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18(23):9620–9628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid \(\beta\) protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62(6):788–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74(6):1071–1096

    Article  CAS  PubMed  Google Scholar 

  • Li S, Stys PK (2001) Na+-K+-ATPase inhibition and depolarization induce glutamate release via reverse Na+-dependent transport in spinal cord white matter. Neuroscience 107(4):675–683

    Article  CAS  PubMed  Google Scholar 

  • Mariño J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201

    Article  PubMed  CAS  Google Scholar 

  • Mironov VI, Romanov AS, Simonov AY, Vedunova MV, Kazantsev VB (2014) Oscillations in a neurite growth model with extracellular feedback. Neurosci Lett 570:16–20

    Article  CAS  PubMed  Google Scholar 

  • Montes J, Gomez E, Merchán-Pérez A, DeFelipe J, Peña J-M (2013) A machine learning method for the prediction of receptor activation in the simulation of synapses. PloS One 8(7):e68888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montes J, Peña JM, DeFelipe J, Herreras O, Merchan-Perez A (2015) The influence of synaptic size on AMPA receptor activation: a Monte Carlo model. PLoS One 10(6):e0130924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy-Royal C, Dupuis JP, Varela JA, Panatier A, Pinson B, Baufreton J, Groc L, Oliet SHR (2015) Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat Neurosci 18(2)

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Verkhratsky A (2012) Artifact versus reality: how astrocytes contribute to synaptic events. Glia 60(7):1013–1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie H, Weng H-R (2009) Glutamate transporters prevent excessive activation of NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal horn. J Neurophysiol 101(4):2041–2051

    Article  CAS  PubMed  Google Scholar 

  • Nie H, Zhang H, Weng H-R (2010) Bidirectional neuron-glia interactions triggered by deficiency of glutamate uptake at spinal sensory synapses. J Neurophysiol 104(2):713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E, Zeuthen T, Lloyd CM, Ottersen OP, Omholt SW, (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput Biol 5(1):e1000272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M, Watanabe M, Hirose K, Iino M (2010) Imaging extrasynaptic glutamate dynamics in the brain. Proc Nat Acad Sci USA 107(14):6526–6531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292(5518):923–926

    Article  CAS  PubMed  Google Scholar 

  • Oschmann F, Mergenthaler K, Jungnickel E, Obermayer K (2017) Spatial separation of two different pathways accaccount for the generation of calcium signals in astrocytes. PLoS Comput Biol 13(2):e1005377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pannasch U, Freche D, Dallérac G, Ghézali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V, Dufour A, Lübke JHR, Déglon N, Knott G, Holcman D, Rouach N (2014) Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 17(4):549–558

    Article  CAS  PubMed  Google Scholar 

  • Patrushev I, Gavrilov N, Turlapov V, Semyanov A (2013) Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication. Cell Calcium 54(5):343–349

    Article  CAS  PubMed  Google Scholar 

  • Petr GT, Sun Y, Frederick XNM, Zhou Y, Dhamne SC, Hameed XMQ, Miranda XC, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki XCJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35(13):5187–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piet R, Vargová L, Syková E, Poulain DA, Oliet SHR (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA 101(7):2151–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pivneva T, Haas B, Reyes-Haro D, Laube G, Veh R, Nolte C, Skibo G, Kettenmann H (2008) Store-operated Ca\(^{2+}\) entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium 43(6):591–601

    Article  CAS  PubMed  Google Scholar 

  • Poskanzer KE, Molofsky AV (2018) Dynamism of an astrocyte in vivo: perspectives on identity and function. Ann Rev Physiol 80:143–157

    Article  CAS  Google Scholar 

  • Poskanzer KE, Yuste R (2011) Astrocytic regulation of cortical UP states. Proc Natl Acad Sci 108(45):18453–18458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poskanzer KE, Yuste R (2016) Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci 113(19):E2675–E2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raynaud X, Nordaas M, Lehre KP, Danbolt NC (2015) Well-posedness of a model equation for neurotransmitter diffusion with reactive boundaries. Math Model Methods Appl Sci 25(02):195–227

    Article  CAS  Google Scholar 

  • Reichenbach A, Derouiche A, Kirchhoff F (2010) Morphology and dynamics of perisynaptic glia. Brain Res Rev 63(1):11–25

    Article  PubMed  Google Scholar 

  • Rojas H, Colina C, Ramos M, Benaim G, Jaffe EH, Caputo C, DiPolo R (2007) Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Ca(i)2+-induced Ca2+ release in rat cerebellar Type-1 astrocytes. J Neurochem 100(5):1188–1202

    Article  CAS  PubMed  Google Scholar 

  • Rose CR, Chatton J-Y (2016) Astrocyte sodium signaling and neuro-metabolic coupling in the brain. Neuroscience 323:121–134

    Article  CAS  PubMed  Google Scholar 

  • Rose CR, Ransom BR (1996) Mechanisms of H+ and Na+ changes induced by glutamate, kainate, and D-aspartate in rat hippocampal astrocytes. J Neurosci 16(17):5393–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose EM, Koo JCP, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na. K-ATPase. J Neurosci 29(25):8143–8155

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Rusakov DA (2001) The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca(2+) depletion. Biophys J 81(4):1947–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusakov DA, Kullmann DM (1998) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18(9):3158–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusakov DA, Lehre KP (2002) Perisynaptic asymmetry of glia: new insights into glutamate signalling. Trends Neurosci 25(10):492–494

    Article  CAS  PubMed  Google Scholar 

  • Saftenku EE (2005) Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus. J Theor Biol 234(3):363–382

    Article  CAS  PubMed  Google Scholar 

  • Savtchenko LP, Rusakov DA (2007) The optimal height of the synaptic cleft. Proc Natl Acad Sci USA 104(6):1823–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savtchouk I, Volterra A (2018) Gliotransmission: beyond black-and-white. J Neurosci 38(1):14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schummers J, Cronin B, Wimmer K, Stimberg M, Martin R, Obermayer K, Koerding K, Sur M (2007) Dynamics of orientation tuning in cat v1 neurons depend on location within layers and orientation maps. Front Neurosci 1(1):145–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A, Beato M (2009) Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 40(3):289–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scimemi A, Tian H, Diamond JS (2009) Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus. J Neurosci 29(46):14581–14595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond JS, Cook DG (2013) Amyloid-\(\beta\)1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci 33(12):5312–5318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol Aging 32(3):553–e1

    Article  PubMed  CAS  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129(4):877–896

    Article  CAS  PubMed  Google Scholar 

  • Smith SL, Häusser M (2010) Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat Neurosci 13(9):1144–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stimberg M, Wimmer K, Martin R, Schwabe L, Mariño J, Schummers J, Lyon DC, Sur M, Obermayer K (2009) The operating regime of local computations in primary visual cortex. Cereb Cortex 19(9):2166–2180

    Article  PubMed  PubMed Central  Google Scholar 

  • Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10(6):735–742

    Article  CAS  PubMed  Google Scholar 

  • Takuma K, Matsuda T, Hashimoto H, Asano S, Baba A (1994) Cultured rat astrocytes possess Na(+)-Ca2+ exchanger. Glia 12(4):336–342

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Shih P-Y, Gomi H, Yoshida T, Nakai J, Ando R, Furuichi T, Mikoshiba K, Semyanov A, Itohara S (2013) Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol Brain 6(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarczy-Hornoch K, Martin KAC, Jack JJB, Stratford KJ (1998) Synaptic interactions bewteen smooth and spiny neurones in layer 4 of cat visual cortex \(\backslash\)in vitro. J Physiol 508(2):351–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong G, Jahr CE (1994) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13(5):1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Tsacopoulos M (2002) Metabolic signaling between neurons and glial cells: a short review. J Physiol 96(3–4):283–288

    CAS  Google Scholar 

  • Tsaneva-Atanasova K, Burgo A, Galli T, Holcman D (2009) Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks. Biophys J 96(3):840–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada S, Iino M, Takayasu Y, Shimamoto K, Ozawa S (2005) Effects of a novel glutamate transporter blocker, (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), on activities of hippocampal neurons. Neuropharmacology 48(4):479–491

    Article  CAS  PubMed  Google Scholar 

  • Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8(12):935–947

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas P, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1):155–168

    Article  CAS  PubMed  Google Scholar 

  • Underhill SM, Wheeler XDS, Amara SG (2015) Differential regulation of two isoforms of the Glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci 35(13):5260–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14(5):1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Weng H-R, Chen JH, Pan ZZ, Nie H (2007) Glial glutamate transporter 1 regulates the spatial and temporal coding of glutamatergic synaptic transmission in spinal lamina II neurons. Neuroscience 149(4):898–907

    Article  CAS  PubMed  Google Scholar 

  • Zahler R, Zhang ZT, Manor M, Boron WF (1997) Sodium kinetics of Na, K-ATPase alpha isoforms in intact transfected HeLa cells. J Gen Physiol 110(2):201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383(6601):634–637

    Article  CAS  PubMed  Google Scholar 

  • Zheng K, Rusakov DA (2015) Efficient integration of synaptic events by NMDA receptors in three-dimensional neuropil. Biophys J 108(10):2457–2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng K, Scimemi A, Rusakov DA (2008) Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns. Biophys J 95(10):4584–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jeremy Petravicz and Mriganka Sur for insightful discussions and Maurizio De Pittà for helping to revise and edit this manuscript in its final form. This work was supported by the Bundesministerium für Bildung und Forschung to KM (grant 01GQ-1009) and by the Deutsche Forschungsgemeinschaft to FO (Graduiertenkolleg 1589).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Obermeyer .

Editor information

Editors and Affiliations

Appendix 1 Network Model

Appendix 1 Network Model

1.1 Neurons

Membrane potential of excitatory (E) and inhibitory (I) neurons changes by the sum of several conductance-based currents following a Hodgkin–Huxley formalism. The currents modulating a neuron’s membrane potential are: (i) an intrinsic voltage-gated current accounting for firing properties of the cell (\(i_\mathrm {AP}\)); (ii) an ohmic leakage current (\(i_l\)); (iii) a postsynaptic current mediated by ionotropic glutamate/GABA receptors at lateral (in-network) connections (\(i_s\)); (iv) a depolarizing current mediated by extrasynaptically located (postsynaptic) NMDA receptors (\(i_e\)); (v) an external background current accounting for synaptic inputs to the neurons from outside the network (\(i_\mathrm {X}\)). Equation for the membrane potential of the generic \(\alpha \) neuron (i.e., \(v_\alpha \), with \(\alpha = \mathrm {E,\,I}\)) thus reads

$$\begin{aligned} c_m^\alpha \frac{\mathrm {d}v_\alpha }{\mathrm {d}t} = -i_\mathrm {AP}^\alpha - i_l^\alpha - i_s^\alpha - i_e^\alpha - i_\mathrm {X}^\alpha \end{aligned}$$
(13.19)

where \(c_m^\alpha \) denoting the neuron membrane capacitance.

1.2 Intrinsic and Leakage Currents

The voltage-gated intrinsic current that is responsible for making the neuron fire ensues from the sum of: (i) a fast \(\mathrm{{Na^+}}\)-mediated current (\(i_{\mathrm{{Na}}}\)); (ii) a delayed rectifying \(\mathrm{{K^+}}\) current (\(i_{\mathrm{{K}},d}\)); and (iii) a population-specific, slow noninactivating \(\mathrm{{K^+}}\)-mediated M-current (\(i_{\mathrm{{M}}}^\alpha \)), i.e.,

$$\begin{aligned} i_\mathrm {AP}^\alpha = i_{\mathrm{{Na}}} + i_{\mathrm{{K}},d} + i_{\mathrm{{M}}}^\alpha \end{aligned}$$
(13.20)

The generic expression for any of the currents on the right hand side of the previous equation is

$$\begin{aligned} i_y&= g_y^\alpha m_y^{\mu _y} n_y^{\nu _y} (v_\alpha - E_y)&\text {with}\,y=\mathrm{{Na}},\,\mathrm{{K}}d,\,\mathrm{{M}} \end{aligned}$$
(13.21)

where activating (inactivating) gating variables \(m_y\) (\(n_y\)) are in the form

$$\begin{aligned} \frac{\mathrm {d}\chi _y}{\mathrm {d}t}&= \beta _{y,o}^\chi (1-\chi _y)-\beta _{y,c}^\chi \chi _y&\text {with}\, \chi =m,\,n \end{aligned}$$
(13.22)
$$\begin{aligned} \beta _x&= \frac{b_1 b_2(v_\alpha )}{\exp (b_3(v_\alpha ))+b_4}&\text {with}\, x=o,\,c \end{aligned}$$
(13.23)

and current-specific voltage dependence of gating variables is detailed in Table 13.8.

Table 13.8 Voltage dependence of intrinsic gating variables (Destexhe and Paré 1999)

The leakage current is modeled by a standard ohmic current, i.e.,

$$\begin{aligned} i_l^\alpha = g_l^\alpha (v_\alpha - E_\alpha ) \end{aligned}$$
(13.24)

1.3 Synaptic and Extrasynaptic Currents

Each neuron receives glutamatergic and GABAergic lateral synaptic inputs and is stimulated by glutamatergic afferents. Lateral glutamatergic connections are mediated by both AMPARs and NMDARs, whereas for afferent synapses we only consider AMPAR-mediated currents. Accordingly, the total synaptic drive to a generic \(\alpha \) neuron (\(\alpha = E, I\)) is given by

$$\begin{aligned} i_s^\alpha = \frac{1}{N_{\alpha \mathrm {X}}}\sum _{j \in \mathrm {X}} i_\mathrm {AMPA}^{\alpha j} + \frac{1}{N_{\alpha \mathrm {E}}} \sum _{j \in {E}} \left( i_\mathrm {AMPA}^{\alpha j} + i_\mathrm {NMDA}^{\alpha j}\right) + \frac{1}{N_{\alpha I}}\sum _{j \in I} i_\mathrm {GABA}^{\alpha j} \end{aligned}$$
(13.25)

where \(N_{\alpha \phi }\) (\(\phi =E, I, X)\), and receptors-specific currents are given by (Destexhe et al. 1998; Saftenku 2005):

$$\begin{aligned} i_\mathrm {AMPA}^{\alpha j}&= g_\mathrm {AMPA}^{\alpha j} O_\mathrm {AMPA}^{\alpha j} (v_\alpha -E_\mathrm {AMPA}) \end{aligned}$$
(13.26)
$$\begin{aligned} i_\mathrm {NMDA}^{\alpha j}&= g_\mathrm {NMDA}^{\alpha j} B_\alpha (\mathrm{{[Mg^{2+}]_e}}) O_\mathrm {NMDA}^{\alpha j} (v_\alpha -E_\mathrm {NMDA}) \end{aligned}$$
(13.27)
$$\begin{aligned} i_\mathrm {GABA}^{\alpha j}&= g_\mathrm {GABA} O_\mathrm {GABA}^{\alpha j} (v_\alpha -E_\mathrm {GABA}) \end{aligned}$$
(13.28)

with \(B_\alpha (\mathrm{{[Mg^{2+}]_\textit{e}}}) \,{=}\, 1/\left( 1+\exp (-0.062v_\alpha )\mathrm{{[Mg^{2+}]_\textit{e}}}/3.57\right) \) (Jahr and Stevens 1990), where \(g_x,\,E_x\) (\(x= \mathrm {AMPA,\,NMDA,\,GABA}\)), respectively, stand for receptor-specific conductances and reverse potentials, and \(\mathrm{{[Mg^{2+}]_e}}\) is the extracellular magnesium concentration.

Currents mediated by extrasynaptic NMDARs in neuron \(\alpha \) are modeled akin to synaptic currents, yet considering an expression for the fraction of open receptors that is a power law function of the extracellular ambient glutamate concentration in the neuron’s surroundings (\(G_0^\alpha \)) (Bentzen et al. 2009), i.e.,

$$\begin{aligned} i_e^\alpha&= g_e^\alpha B_\alpha (\mathrm{{[Mg^{2+}]_e}}) O_e^\alpha (G_0^\alpha ) (v_\alpha -E_e)\end{aligned}$$
(13.29)
$$\begin{aligned} O_e^\alpha (G_0^\alpha )&= 0.397\, (G_0^\alpha )^{1.5} \end{aligned}$$
(13.30)

1.4 Background Current

All neurons in the network are stimulated by a conductance-based background current that comprises both excitatory and inhibitory contributions, i.e.,

$$\begin{aligned} i_\mathrm {X}^\alpha = g_{\alpha \mathrm {E}}^\mathrm {X}(t)(v_\alpha - E_\mathrm {E}^\mathrm {X}) - g_{\alpha \mathrm {I}}^\mathrm {X}(t) (v_\alpha - E_\mathrm {I}^\mathrm {X}). \end{aligned}$$
(13.31)

where conductances \(g_{\alpha \beta }^\mathrm {X}\) follow an Ornstein-Uhlenbeck process, i.e.,

$$\begin{aligned} \frac{\mathrm {d}g_{\alpha \beta }^\mathrm {X}}{\mathrm {d}t} = \frac{1}{\tau _\alpha ^\mathrm {X}}\left( g_{\alpha \beta }^\mathrm {X}(t) - g_{\alpha \beta }^\mathrm {X}\right) + \sigma _\beta ^\mathrm {X} \Gamma (t) \end{aligned}$$
(13.32)

with \(\Gamma (t)\) denoting white Gaussian noise.

1.5 Network Architecture

The V1 network considered in this chapter was constructed following the procedure originally outlined Stimberg et al. (2009), and the reader may refer to that study for implementation details on pinwheel domain-organized, two-dimensional orientation-selective cortical maps, such as that considered in Fig. 13.6. In our model, excitatory neurons are located on regular grid of \(N_\mathrm {E} \times N_\mathrm {E}\) nodes. Inhibitory neurons are instead randomly positioned on 1/3 of all available nodes. All neurons receive \(N_{\alpha X}\) afferent inputs in addition to a fixed number of recurrent (lateral) excitatory (\(N_{\alpha \mathrm {E}}\)) and inhibitory inputs (\(N_{\alpha \mathrm {I}}\)). Recurrent connections were randomly drawn from a cell-centered, two-dimensional Gaussian distance distribution with standard deviation \(\sigma _\alpha \) according to Efraimidis and Spirakis (2008), so that nearest-neighbor connections are more likely. Synaptic delays (not shown in the model equations) were drawn from a gamma distribution \(\Gamma _d^\alpha (k_\alpha ,\theta _\alpha )\). To minimize finite-size artifacts, periodic boundary conditions were adopted accordingly. Stimulation was modeled by Poisson-distributed spike trains delivered by afferent inputs at orientation-dependent rate given by

$$\begin{aligned} f(\vartheta ) = \bar{\nu }\left( a_0 + (1-a_0)\exp \left( -\frac{\left( \vartheta - \theta (x,y)\right) ^2}{4w}\right) \right) \end{aligned}$$
(13.33)

where \(\vartheta \) is the orientation of the visual stimulus, \(\bar{\nu }\) is the maximum firing rate attained at preferred afferent orientation, \(a_0\) denotes the part of firing rate that is independent of stimulation, \(\theta (x,y)\) is the spatial map of preferred orientations in the network, and w stands of the afferent input tuning width.

1.6 Numerical Methods

The network model was implemented in Python-based Brian 2.0 simulating environment (Chap. 18) using a standard Euler integration scheme with 0.01 ms time step. Simulations were run for 2 s of simulated time, discarding the first 0.4 s.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mergenthaler, K., Oschmann, F., Obermeyer, K. (2019). Glutamate Uptake by Astrocytic Transporters. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_13

Download citation

Publish with us

Policies and ethics