Skip to main content

A Neuron–Glial Perspective for Computational Neuroscience

  • Chapter
  • First Online:
Computational Glioscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

There is growing excitement around glial cells, as compelling evidence point to new, previously unimaginable roles for these cells in information processing of the brain, with the potential to affect behavior and higher cognitive functions. Among their many possible functions, glial cells could be involved in practically every aspect of the brain physiology in health and disease. As a result, many investigators in the field welcome the notion of a neuron–glial paradigm of brain function, as opposed to Ramon y Cajal’s more classical neuronal doctrine which identifies neurons as the prominent, if not the only, cells capable of a signaling role in the brain. The demonstration of a brain-wide neuron–glial paradigm however remains elusive and so does the notion of what neuron–glial interactions could be functionally relevant for the brain computational tasks. In this perspective, we present a selection of arguments inspired by available experimental and modeling studies with the aim to computational neuroscience that no longer is a mere prerogative of neuronal signaling but rather it is the outcome of complex interaction between neurons and glial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ado:

Adenosine

AMPA (AMPAR):

\(\upalpha \)-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (receptor)

ANLS:

Astrocyte-to-neuron lactate shuttle

AP:

Action potential

AQP4:

Aquaporin channel type 4

cAMP:

Cyclic adenosine monophosphate

CICR:

Calcium-induced calcium release

CNS:

Central nervous system

ECS:

Extracellular space

GABA:

\(\upgamma \)-Aminobutyric acid

GGC:

Glutamate–glutamine cycle

GPCR:

G protein–coupled receptor

\({\mathrm{IP}_3}\) :

Inositol 1,4,5-trisphosphate

Kir:

Inwardly rectifying \({\mathrm{K}^+}\) channel

LTD:

Long-term depression

LTP:

Long-term potentiation

MCT:

Monocarboxylate transporter

NA:

Noradrenaline

NBC:

\({\mathrm{Na}^+}\)-\({\mathrm{HCO}_3^-}\) cotransporter

NKP:

\({\mathrm{Na}^+}\)/\({\mathrm{K}^+}\)-ATPase pump

NMDA (NMDAR):

N-Methyl-d-aspartate (receptor)

SIC (SOC):

Slow inward (outward) current

SON:

Supraoptic nucleus

SSR:

Steady-state synaptic release

TNF\(\upalpha \):

Tumor necrosis factor alpha

V1:

Primary visual cortex

References

  • Abbott LF, DePasquale B, Memmesheimer R-M (2016) Building functional networks of spiking model neurons. Nat Neurosci 19(3):350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59:932–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberdi E, Sánchez-Gómez MV, Marino A, Matute C (2002) Ca\(^{2+}\) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol Dis 9(2):234–243

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87

    Article  CAS  PubMed  Google Scholar 

  • Allen NJ (2013) Role of glia in developmental synapse formation. Curr Opin Neurobiol 23(6):1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Alvarellos-González A, Pazos A, Porto-Pazos AB (2012) Computational models of neuron-astrocyte interactions lead to improved efficacy in the performance of neural networks. Comput Math Methods Med 2012:476324

    Article  PubMed  PubMed Central  Google Scholar 

  • Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22(3):1042–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angulo MC, Le Meur K, Kozlov AS, Charpak S, Audinat E (2008) GABA, a forgotten gliotransmitter. Prog Neurobiol 86(3):297–303

    Article  CAS  PubMed  Google Scholar 

  • Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108(3):227–238

    Article  CAS  PubMed  Google Scholar 

  • Arancibia-Carcamo IL, Ford MC, Cossell L, Ishida K, Tohyama K, Attwell D (2017) Node of Ranvier length as a potential regulator of myelinated axon conduction speed. eLife 6:e23329

    Google Scholar 

  • Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 23(5):208–215

    Article  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbour B (2001) An evaluation of synapse independence. J Neurosci 21(20):7969–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barres B (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3):430–440

    Article  CAS  PubMed  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4(3):389–399

    Article  CAS  PubMed  Google Scholar 

  • Beck JM, Ma WJ, Kiani R, Hanks T, Churchland AK, Roitman J, Shadlen MN, Latham PE, Pouget A (2008) Probabilistic population codes for Bayesian decision making. Neuron 60(6):1142–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becquet D, Girardet C, Guillaumond F, François-Bellan A-M, Bosler O (2008) Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment. Glia 56(3):294–305

    Article  PubMed  Google Scholar 

  • Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    Article  PubMed  CAS  Google Scholar 

  • Bellesi M, de Vivo L, Tononi G, Cirelli C (2015) Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 13(1):66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellesi M, Pfister-Genskow M, Maret S, Keles S, Tononi G, Cirelli C (2013) Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci 33(36):14288–14300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benz B, Grima G, Do KQ (2004) Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling. Neuroscience 124(2):377–386

    Article  CAS  PubMed  Google Scholar 

  • Bernardinelli Y, Muller D, Nikonenko I (2014a) Astrocyte-synapse structural plasticity. Neural Plast 2014:23215

    Article  CAS  Google Scholar 

  • Bernardinelli Y, Randall J, Janett E, Nikonenko I, König S, Jones EV, Flores CE, Murai KK, Bochet CG, Holtmaat A, Muller D (2014b) Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol 24(15):1679–1688

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNF\(\alpha \): amplification by microglia triggers neurotoxicity. Nat Neurosci 4(7):702–710

    Article  CAS  PubMed  Google Scholar 

  • Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11:387–394

    Article  CAS  PubMed  Google Scholar 

  • Bialek W, Rieke F (1992) Reliability and information transmission in spiking neurons. Trends Neurosci 15(11):428–434

    Article  CAS  PubMed  Google Scholar 

  • Biber K, Laurie DJ, Berthele A, Sommer B, Tölle TR, Gebicke-Härter P-J, Van Calker D, Boddeke HWGM (1999) Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72(4):1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Bienenstock E, Cooper L, Munro P (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindocci E, Savtchouk I, Liaudet N, Becker D, Carriero G, Volterra A (2017) Three-dimensional Ca\(^{2+}\) imaging advances understanding of astrocyte biology. Science 356:6339

    Article  CAS  Google Scholar 

  • Bjorness TE, Dale N, Mettlach G, Sonneborn A, Sahin B, Fienberg AA, Yanagisawa M, Bibb JA, Greene RW (2016) An adenosine-mediated glial-neuronal circuit for homeostatic sleep. J Neurosci 36(13):3709–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129(6):485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocyte in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt AM (2006) Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia 54(7):666–675

    Article  PubMed  Google Scholar 

  • Butt AM, Pugh M, Hubbard P, James G (2004) Functions of optic nerve glia: axoglial signalling in physiology and pathology. Eye 18(11):1110

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68(3):362–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10(10):3227–3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro MA, Beltrán FA, Brauchi S, Concha II (2009) A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 110(2):423–440

    Article  CAS  PubMed  Google Scholar 

  • Chao TI, Rickmann M, Wolff JR (2002) The synapse-astrocyte boundary: an anatomical basis for an integrative role of glia in synaptic transmission. In: Volterra A, Magistretti PJ, Haydon PG (eds) The tripartite synapse: glia in synaptic transmission (Chap. 1). Oxford University Press, New York, pp 3–23

    Google Scholar 

  • Chen N, Sugihara H, Sharma J, Perea G, Petravicz J, Le C, Sur M (2012) Nucleus basalis enabled stimulus specific plasticity in the visual cortex is mediated by astrocytes. Proc Natl Acad Sci USA 109(41):E2832–E2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chever O, Djukic B, McCarthy KD, Amzica F (2010) Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. J Neurosci 30(47):15769–15777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchill L, Rector DM, Yasuda K, Fix C, Rojas MJ, Yasuda T, Krueger JM (2008) Tumor necrosis factor \(\alpha \): activity dependent expression and promotion of cortical column sleep in rats. Neuroscience 156(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19(5):163–171

    Article  CAS  PubMed  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278(2):1354–1362

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Reisin HD (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006(1):126–131

    Article  CAS  PubMed  Google Scholar 

  • Condamine S, Lavoie R, Verdier D, Kolta A (2018) Functional rhythmogenic domains defined by astrocytic networks in the trigeminal main sensory nucleus. Glia 66(2):311–326

    Article  PubMed  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, Ma S, Sang K, Tang S, Li Y, Berry H, Shengzi W, Hailan H (2018) Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554(7692):323

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    Article  CAS  PubMed  Google Scholar 

  • De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plast p 7607924

    Google Scholar 

  • De Pittà M, Brunel N, Volterra A (2015) Astrocytes: orchestrating synaptic plasticity? Neuroscience

    Google Scholar 

  • De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009) Glutamate-dependent intracellular calcium and IP\(_{3}\) oscillating and pulsating dynamics in astrocytes. J Biol Phys 35:383–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Volman V, Berry H, Ben-Jacob E (2011) A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput Biol 7(12):e1002293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Volman V, Levine H, Pioggia G, De Rossi D, Ben-Jacob E (2008) Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys Rev E 77(3):030903(R)

    Article  CAS  Google Scholar 

  • Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12(1):43

    Article  CAS  PubMed  Google Scholar 

  • Deitmer JW, Rose CR (1996) pH regulation and proton signalling by glial cells. Prog Neurobiol 48(2):73–103

    Article  CAS  PubMed  Google Scholar 

  • Del Negro CA, Funk GD, Feldman JL (2018) Breathing matters. Nat Rev Neurosci 19(6):351–367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Devaraju P, Sun M-Y, Myers TL, Lauderdale K, Fiacco TA (2013) Astrocytic group I mGluR-dependent potentiation of astrocytic glutamate and potassium uptake. J Neurophysiol 109(9):2404–2414

    Article  CAS  PubMed  Google Scholar 

  • Di Castro M, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca\(^{2+}\) detection and modulation of synaptic release by astrocytes. Nat Neurosci 14:1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Diamond MC, Scheibel AB, Murphy GM Jr, Harvey T (1985) On the brain of a scientist: Albert Einstein. Exp Neurol 88(1):198–204

    Article  CAS  PubMed  Google Scholar 

  • Dienel GA (2012) Fueling and imaging brain activation. ASN Neuro 4(AN20120021):5

    Google Scholar 

  • Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28(41):10434–10442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittman JS, Kreitzer AC, Regehr WG (2000) Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 20(4):1374–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djukic B, Casper KB, Philpot BD, Chin L-S, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27(42):11354–11365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca\(^{2+}\) response amplitude and duration. Nature 386(24):855–858

    Article  CAS  PubMed  Google Scholar 

  • Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-\(\alpha \) and prostaglandins. J Biol Chem 281:30684–30696

    Article  CAS  PubMed  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671

    Article  CAS  PubMed  Google Scholar 

  • Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468(7321):223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiacco TA, McCarthy KD (2018) Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci 38(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields RD (2009a) The other brain: From dementia to schizophrenia, how new discoveries about the brain are revolutionizing medicine and science (1st ed). Simon and Schuster

    Google Scholar 

  • Fields RD (2009b) Regulation of myelination by functional activity. In: Kettenmann H, Ransom BR (eds) Neuroglia (3rd ed) (Chap. 45). Oxford University Press, Oxford, pp 573–586

    Google Scholar 

  • Fields RD, Woo DH, Basser PJ (2015) Glial regulation of the neuronal connectome through local and long-distant communication. Neuron 86(2):374–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florence CM, Baillie LD, Mulligan SJ (2012) Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS One 7(11):e51124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T (2011) Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 31(19):6956–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, Pecka M, Attwell D, Grothe B (2015) Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun 6:8073

    Google Scholar 

  • Fortune ES, Rose GJ (2001) Short-term synaptic plasticity as a temporal filter. Trends Neurosci 24(7):381–385

    Article  CAS  PubMed  Google Scholar 

  • Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23(37):11628–11640

    Article  PubMed  PubMed Central  Google Scholar 

  • Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879):433–438

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC, Debanne D, Bi G (2010) Temporal modulation of spike-timing-dependent plasticity. Frontiers Synaptic Neurosci 2(19):1–16

    Google Scholar 

  • Froemke RC, Tsay IA, Raad M, Long JD, Dan Y (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95(3):1620–1629

    Article  PubMed  Google Scholar 

  • Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, Kirchhoff F, Möbius W, Goebbels S, Nave K (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 11(7):e1001604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganmor E, Segev R, Schneidman E (2015) A thesaurus for a neural population code. eLife 4:e06134

    Google Scholar 

  • Garnier A, Vidal A, Benali H (2016) A theoretical study on the role of astrocytic activity in neuronal hyperexcitability by a novel neuron-glia mass model. J Math Neurosci 6(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87(5–6):404–415

    Article  PubMed  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56(1):615–649

    Article  CAS  PubMed  Google Scholar 

  • Gordon GRJ, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55(12):1214–1221

    Article  PubMed  Google Scholar 

  • Götz M (2013) Neuroglia, chapter Radial glial cells. Oxford University Press, Oxford, pp 50–61

    Book  Google Scholar 

  • Graupner M, Brunel N (2010) Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Frontiers Comput Neurosci 4(136):1–19

    Google Scholar 

  • Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68:128–149

    Article  CAS  Google Scholar 

  • Grosche J, Matyash V, Möller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nature 2(2):139–143

    Article  CAS  PubMed  Google Scholar 

  • Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N, Klaus FR, Kollias G, Fontana A, Pryce CR, Suter T, Volterra A (2015) Neuroinflammatory TNF\(\alpha \) impairs memory via astrocyte signaling. Cell 163(7):1730–1741

    Article  CAS  PubMed  Google Scholar 

  • Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26(35):8881–8891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halassa M, Haydon P (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56(7):734–749

    Article  PubMed  Google Scholar 

  • Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12(3):342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartline DK (2011) The evolutionary origins of glia. Glia 59(9):1215–1236

    Article  PubMed  Google Scholar 

  • Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  CAS  PubMed  Google Scholar 

  • Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63(12):2133–2151

    Article  PubMed  PubMed Central  Google Scholar 

  • Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertz L (1965) Possible role of neuroglia: a potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature 206(4989):1091

    Article  CAS  PubMed  Google Scholar 

  • Hertz L (2013) The glutamate-glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Frontiers Endocrinol 4:59

    Article  CAS  Google Scholar 

  • Hirase H, Qian L, Barthó P, Buzsáki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2(4):0494–0496

    Article  CAS  Google Scholar 

  • Hoffmann A, Kann O, Ohlemeyer C, Hanisch U-K, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23(11):4410–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogland TM, Kuhn B, Göbel W, Huang W, Nakai J, Helmchen F, Flint J, Wang SS (2009) Radially expanding transglial calcium waves in the intact cerebellum. Proc Nat Acad Sci 106(9):3496–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE (2018) Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 21:696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10(11):1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, Moriishi K, Moriyama Y, Koizumi S (2013) Microglia release ATP by exocytosis. Glia 61(8):1320–1330

    Article  PubMed  Google Scholar 

  • Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24(44):9847–9861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18(2):245–282

    Article  PubMed  Google Scholar 

  • Jackson FR (2011) Glial cell modulation of circadian rhythms. Glia 59(9):1341–1350

    Article  PubMed  Google Scholar 

  • Jadhav AP, Roesch K, Cepko CL (2009) Development and neurogenic potential of Müller glial cells in the vertebrate retina. Prog Retinal Eye Res 28(4):249–262

    Article  CAS  Google Scholar 

  • Jaffe LF (1993) Classes and mechanisms of calcium waves. Cell Calcium 14(10):736–745

    Article  CAS  PubMed  Google Scholar 

  • Jeftinija SD, Jeftinija KV, Stefanovic G, Liu F (1996) Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem 66:676–684

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Xing F, Guo B, Yang J, Li Z, Wei W, Hu F, Lee I, Zhang X, Pan L, Xu J (2017) Nucleotide transmitters ATP and ADP mediate intercellular calcium wave communication via P2Y\(_{12/13}\) receptors among BV-2 microglia. PloS One 12(8):e0183114

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiménez-González C, Pirttimaki T, Cope DW, Parri HR (2011) Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets \(\delta \)-subunit-containing GABA\(_\text{A}\) receptors. Eur J Neurosci 33(8):1471–1482

    Google Scholar 

  • Johnston D, Wu SM-S (1995) Foundations of cellular neurophysiology. MIT Press, Cambridge, MA

    Google Scholar 

  • Kadala A, Verdier D, Morquette P, Kolta A (2015) Ion homeostasis in rhythmogenesis: the interplay between neurons and astroglia. Physiology 30(5):371–388

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Káradóttir R, Attwell D (2007) Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145(4):1426–1438

    Article  PubMed  CAS  Google Scholar 

  • Kaschube M, Schnabel M, Löwel S, Coppola DM, White LE, Wolf F (2010) Universality in the evolution of orientation columns in the visual cortex. Science 330(6007):1113–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasthuri N, Hayworth K, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vázquez-Reina A, Kaynig V, Jones TR, Roberts M, Lyskowski JM, Tapia JC, Seung HS, Roncal WG, Vogelstein JT, Burns R, Sussman DL, Priebe CE, Pfister H, Lichtman JW (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661

    Article  CAS  PubMed  Google Scholar 

  • Katagiri H, Tanaka K, Manabe T (2001) Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur J Neurosci 14(3):547–553

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Ransom BR (2013) Neuroglia, 3rd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura F, Itami C (2009) Myelination and isochronicity in neural networks. Frontiers Neuroanat 3:12

    Article  Google Scholar 

  • Kinney JP, Spacek J, Bartol TM, Bajaj CL, Harris KM, Sejnowski TJ (2013) Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. J Comp Neurol 521(2):448–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129(4):1043–1054

    Article  CAS  Google Scholar 

  • Kozlov AS, Angulo MC, Audinat E, Charpak S (2006) Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci USA 103(26):10058–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krämer-Albers E-M, Bretz N, Tenzer S, Winterstein C, Möbius W, Berger H, Nave K-A, Schild H, Trotter J (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics-Clin Appl 1(11):1446–1461

    Article  PubMed  CAS  Google Scholar 

  • Krzan M, Stenovec N, Kreft M, Pangrsic T, Grilc S, Haydon PG, Zorec R (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23:1580–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y (2011) Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 31(7):2607–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kummer U, Olsen LF, Green AK, Bomberg-Bauer E, Baier G (2000) Switching from simple to complex oscillations in calcium signaling. Biophys J 79:1188–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ, Rosenbluth J (2003) Role of myelination in the development of a uniform olivocerebellar conduction time. J Neurophysiol 89(4):2259–2270

    Article  PubMed  Google Scholar 

  • Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N (2014) Contributions of the Na\(^+\)/K\(^+\)-ATPase, NKCC1, and Kir4.1 to hippocampal K\(^+\) clearance and volume responses. Glia 62(4):608–622

    Article  PubMed  PubMed Central  Google Scholar 

  • Laughlin SB, Sejnowski TJ (2003) Communication in neuronal networks. Science 301(5641):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170

    Article  CAS  PubMed  Google Scholar 

  • Le Meur K, Mendizabal-Zubiaga J, Grandes P, Audinat E (2012) GABA release by hippocampal astrocytes. Front Comp Neurosci p 6

    Google Scholar 

  • Lee HS, Ghetti A, Pinto-Duarte A, Wang X, Dziewczapolski G, Galimi F, Huitron-Resendiz S, Piña-Crespo JC, Roberts AJ, Verma IM, Sejnowski TJ, Heinemann SF (2014) Astrocytes contribute to gamma oscillations and recognition memory. Proc Nat Acad Sci USA pp E3343–E3352

    Article  CAS  Google Scholar 

  • Lehre KP, Rusakov DA (2002) Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys J 83(1):125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a chinese hamster ovary cell line selected for low endogenous Na\(^+\)-dependent glutamate uptake. J Neurosci 18(23):9620–9628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewitus GM, Konefal SC, Greenhalgh AD, Pribiag H, Augereau K, Stellwagen D (2016) Microglial TNF-\(\alpha \) suppresses cocaine-induced plasticity and behavioral sensitization. Neuron 90(3):483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewitus GM, Pribiag H, Duseja R, St-Hilaire M, Stellwagen D (2014) An adaptive role of TNF\(\alpha \) in the regulation of striatal synapses. J Neurosci 34(18):6146–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leybaert L, Sanderson MJ (2012) Intercellular Ca\(^{2+}\) waves: mechanisms and function. Physiol Rev 92(3):1359–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind BL, Brazhe AR, Jessen SB, Tan FCC, Lauritzen MJ (2013) Rapid stimulus-evoked astrocyte Ca\(^{2+}\) elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Nat Acad Sci 110(48):E4678–E4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman JJ, Lordkipanidze T, Buell ME, Yoon SO, Dunaevsky A (2008) Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia 56(13):1463–1477

    Article  PubMed  PubMed Central  Google Scholar 

  • Lippman JJ, Lordkipanidze T, Cobb N, Dunaevsky A (2010) Bergmann glial ensheathment of dendritic spines regulates synapse number without affecting spine motility. Neuron Glia Biol 6(3):193–200

    Article  Google Scholar 

  • Liu GJ, Kalous A, Werry EL, Bennett MR (2006) Purine release from spinal cord microglia after elevation of calcium by glutamate. Mol Pharmacol 70(3):851–859

    Article  CAS  PubMed  Google Scholar 

  • López-Hidalgo M, Hoover WB, Schummers J (2016) Spatial organization of astrocytes in ferret visual cortex. J Comp Neurol 524(17):3561–3576

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Hidalgo M, Schummers J (2014) Cortical maps: a role for astrocytes? Curr Opin Neurobiol 24:176–189

    Article  PubMed  CAS  Google Scholar 

  • Lushnikova I, Skibo G, Muller D, Nikonenko I (2009) Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus. Hippocampus 19(8):753–762

    Article  PubMed  Google Scholar 

  • Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflügers Archiv - Eur J Physiol 447(5):784–795

    Article  CAS  Google Scholar 

  • Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901

    Article  CAS  PubMed  Google Scholar 

  • Marchaland J, Calì C, Voglmaier SM, Li H, Regazzi R, Edwards RH, Bezzi P (2008) Fast subplasma membrane Ca\(^{2+}\) transients control exo-endocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 28(37):9122–9132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchant JS, Parker I (2001) Role of elementary Ca\(^{2+}\) puffs in generating repetitive Ca\(^{2+}\) oscillations. EMBO J 20(1–2):65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500(2):409–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín R, Bajo-Grañeras R, Moratalla R, Perea G, Araque A (2015) Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349(6249):730–734

    Article  CAS  PubMed  Google Scholar 

  • Mashimo M, Okubo Y, Yamazawa T, Yamasaki M, Watanabe M, Murayama T, Iino M (2010) Inositol 1,4,5-trisphosphate signaling maintains the activity of glutamate uptake in Bergmann glia. Eur J Neurosci 32(10):1668–1677

    Article  PubMed  Google Scholar 

  • McAlpine D, Grothe B (2003) Sound localization and delay lines-do mammals fit the model? Trends Neurosci 26(7):347–350

    Article  CAS  PubMed  Google Scholar 

  • Medvedev N, Popov V, Henneberger C, Kraev I, Rusakov DA, Stewart MG (2014) Glia selectively approach synapses on thin dendritic spines. Phil Trans R Soc B 369(1654):20140047

    Article  PubMed  PubMed Central  Google Scholar 

  • Men W, Falk D, Sun T, Chen W, Li J, Yin D, Zang L, Fan M (2014) The corpus callosum of Albert Einsteins brain: another clue to his high intelligence? Brain 137(4):e268–e268

    Article  PubMed  Google Scholar 

  • Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesejo P, Ibánez O, Fernández-Blanco E, Cedrón F, Pazos A, Porto-Pazos AB (2015) Artificial neuron-glia networks learning approach based on cooperative coevolution. Int J Neural Syst 25(04):1550012

    Article  PubMed  Google Scholar 

  • Min R, Nevian T (2012) Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat Neurosci 15(5):746–753

    Article  CAS  PubMed  Google Scholar 

  • Molofsky AV, Kelley KW, Tsai H-H, Redmond SA, Chang SM, Madireddy L, Chan JR, Baranzini SE, Ullian EM, Rowitch DH (2014) Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509(7499):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morquette P, Verdier D, Kadala A, Féthière J, Philippe AG, Robitaille R, Kolta A (2015) An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat Neurosci 18(6):844

    Article  CAS  PubMed  Google Scholar 

  • Mothet J-P, Parent AT, Wolosker H, Brady RO, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Nat Acad Sci 97(9):4926–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan S, MacVicar B (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431(7005):195–199

    Article  CAS  PubMed  Google Scholar 

  • Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129(4):905–913

    Article  CAS  PubMed  Google Scholar 

  • Nave K-A (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263(5154):1768

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Ransom BR, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530

    Article  CAS  PubMed  Google Scholar 

  • Nevian T, Sakmann B (2006) Spine Ca\(^{2+}\) signaling in spike-timing-dependent plasticity. J Neurosci 26(43):11001–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman E (2005) Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci 25(23):5502–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PloS One 6(12):e28427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6(11):863

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1:31–37

    Article  CAS  PubMed  Google Scholar 

  • Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G (2011) Regional slow waves and spindles in human sleep. Neuron 70(1):153–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliet SHR, Mothet J (2009) Regulation of \(N\)-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience 158(1):275–283

    Article  CAS  PubMed  Google Scholar 

  • Oliet SHR, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JF, Sardinha VM, Guerra-Gomes S, Araque A, Sousa N (2015) Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends Neurosci 38(9):535–549

    Article  CAS  PubMed  Google Scholar 

  • Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F (2009) Up-regulation of GLT-1 severely impairs LTD at mossy fibre-CA3 synapses. J Physiol 587(19):4575–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill LAJ, Kaltschmidt C (1997) NF-\(\kappa \)B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20(6):252–258

    Article  PubMed  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):788–806

    Article  CAS  PubMed  Google Scholar 

  • Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E, Zeuthen T, Lloyd CM, Ottersen OP, Omholt SW (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput Biol 5(1):e1000272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT (2012) Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. J Comput Neurosci 32(1):147–165

    Article  PubMed  Google Scholar 

  • Palygin O, Lalo U, Verkhratsky A, Pankratov Y (2010) Ionotropic NMDA and P2X\(_{1/5}\) receptors mediate synaptically induced Ca\(^{2+}\) signalling in cortical astrocytes. Cell Calcium 48(4):225–231

    Article  CAS  PubMed  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d-serine controls nmda receptor activity and synaptic memory. Cell 125:775–784

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet J, Oliet S (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150(3):633–646

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97(15):8629–8634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parys B, Côté A, Gallo V, De Koninck P, Sík A (2010) Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture. Neuroscience 167(4):1032–1043

    Article  CAS  PubMed  Google Scholar 

  • Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2011) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Nat Acad Sci pp 1–9

    Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17(20):7817–7830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21(2):477–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Nat Acad Sci 91(22):10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32(7):1152–1166

    Article  CAS  PubMed  Google Scholar 

  • Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29(11):1754–1762

    Article  CAS  PubMed  Google Scholar 

  • Perez-Alvarez A, Navarrete M, Covelo A, Martin ED, Araque A (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34(38):12738–12744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perkel DH, Bullock TH (1968) Neural coding: a report based on an NRP work session. Neurosci Res Program Bull 6:219–349

    Google Scholar 

  • Petit J-M, Magistretti PJ (2016) Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle. Neuroscience 323:135–156

    Article  CAS  PubMed  Google Scholar 

  • Philips RT, Sur M, Chakravarthy VS (2017) The influence of astrocytes on the width of orientation hypercolumns in visual cortex: A computational perspective. PLoS Comput Biol 13(10):e1005785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piet R, Vargová L, Syková E, Poulain D, Oliet S (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA 101(7):2151–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30(10):527–535

    Article  CAS  PubMed  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16(16):5073–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51(4):439–455

    Article  CAS  PubMed  Google Scholar 

  • Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáñez O, Pazos A, Araque A (2011) Artificial astrocytes improve neural network performance. PloS One 6(4):e19109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poskanzer KE, Yuste R (2016) Astrocytes regulate cortical state switching in vivo. Proc Nat Acad Sci 113(19):E2675–E2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pribiag H, Stellwagen D (2013) TNF-\(\upalpha \) downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA\(_{\rm A}\) receptors. J Neurosci 33(40):15879–15893

    Google Scholar 

  • Price DL, Ludwig JW, Mi H, Schwarz TL, Ellisman MH (2002) Distribution of rSlo Ca\(^{2+}\)-activated K\(^+\) channels in rat astrocyte perivascular endfeet. Brain Res 956(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K\(^+\) accumulation in rat optic nerve: the role of glial and axonal Na\(^+\) pumps. J Physiol 522(3):427–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenbach A, Derouiche A, Kirchhoff F (2010) Morphology and dynamics of perisynaptic glia. Brain Res Rev 63(1):11–25

    Article  PubMed  Google Scholar 

  • Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, Fusi S (2013) The importance of mixed selectivity in complex cognitive tasks. Nature 497(7451):585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose CR, Chatton J-Y (2016) Astrocyte sodium signaling and neuro-metabolic coupling in the brain. Neuroscience 323:121–134

    Article  CAS  PubMed  Google Scholar 

  • Rothman DL, Behar KL, Hyder F, Shulman RG (2003) In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 65(1):401–427

    Article  CAS  PubMed  Google Scholar 

  • Roxin A, Brunel N, Hansel D (2005) Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett 94(23):238103

    Article  PubMed  CAS  Google Scholar 

  • Roxin A, Montbrió E (2011) How effective delays shape oscillatory dynamics in neuronal networks. Phys D 240(3):323–345

    Article  Google Scholar 

  • Rusakov DA (2001) The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca\(^{2+}\) depletion. Biophys J 81(4):1947–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusakov DA (2015) Disentangling calcium-driven astrocyte physiology. Nat Rev Neurosci 16:226–233

    Article  CAS  PubMed  Google Scholar 

  • Sahlender DA, Savtchouk I, Volterra A (2014) What do we know about gliotransmitter release from astrocytes? Phil Tran R Soc B 369:20130592

    Article  CAS  Google Scholar 

  • Santello M, Bezzi P, Volterra A (2011) TNF\(\upalpha \) controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69:988–1001

    Google Scholar 

  • Santello M, Volterra A (2012) TNF\(\upalpha \) in synaptic function: switching gears. Trends Neurosci 35(10):638–647

    Google Scholar 

  • Savin C, Triesch J, Meyer-Hermann M (2009) Epileptogenesis due to glia-mediated synaptic scaling. J R Soc Interface 6(37):655–668

    Article  CAS  PubMed  Google Scholar 

  • Savtchenko LP, Rusakov DA (2014) Regulation of rhythm genesis by volume-limited, astroglia-like signals in neural networks. Phil Trans Royal Soc B: Biol Sci 369(1654):20130614

    Article  Google Scholar 

  • Savtchouk I, Volterra A (2018) Gliotransmission: beyond black-and-white. J Neurosci 38(1):14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: What they are and what they do. Glia 54:716–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca\(^{2+}\) waves trigger responses in microglial cells in brain slices. FASEB J 16(2):255–257

    Article  CAS  PubMed  Google Scholar 

  • Schmitt L, Sims R, Dale N, Haydon P (2012) Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J Neurosci 32(13):4417–4425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Sci STKE 320(5883):1638

    CAS  Google Scholar 

  • Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations from single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355

    Article  CAS  PubMed  Google Scholar 

  • Seidl AH, Rubel EW, Harris DM (2010) Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J Neurosci 30(1):70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E, Sherwood JL, Panatier A, Oliet SHR, Mikoshiba K (2017) Astrocytic IP\(_{3}\)Rs: Contribution to Ca\(^{2+}\) signalling and hippocampal ltp. Glia 65(3):502–513

    Article  PubMed  Google Scholar 

  • Shigetomi E, Jackson-Weaver O, Huckstepp RT, O’Dell TJ, Khakh BS (2013) TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J Neurosci 33(24):10143–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigetomi E, Tong X, Kwan K, Corey D, Khakh B (2012) TRPA1 channels regulate astrocyte resting calcium levels and inhibitory synapse efficacy via GAT-3. Nat Neurosci 15(1):70–80

    Article  CAS  Google Scholar 

  • Sild M, Ruthazer ES (2011) Radial glia: progenitor, pathway, and partner. Neuroscientist 17(3):288–302

    Article  PubMed  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129(4):877–896

    Article  CAS  PubMed  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27(11):1766–1791

    Article  CAS  PubMed  Google Scholar 

  • Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey SC, Taylor CW, Falcke M (2008) How does intracellular Ca\(^{2+}\) oscillate: by chance or by clock? Biophys J 94:2404–2411

    Article  CAS  PubMed  Google Scholar 

  • Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8(3):254–267

    Article  CAS  PubMed  Google Scholar 

  • Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25(2):349–365

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H, Zeng H, Golshani P, Khakh BS (2015) Ca\(^{2+}\) signaling in astrocytes from Ip3r2\(^{-/-}\) mice in brain sslice and during startle responses in vivo. Nat Neurosci 18:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stassart R, Goebbels S, Nave K-A (2013) Factors controlling myelin formation. In: Kettenmann H, Ransom BR (eds) Neuroglia (3rd ed) (Chap. 44). Oxford University Press, Oxford, pp 555–572

    Google Scholar 

  • Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverría C, Orellana JA, Bultynck G, Ponsaerts R, Leybaert L, Simon F, Simon F, Sáez JC, Retamal MA (2012) Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 26(9):3649–3657

    Article  CAS  PubMed  Google Scholar 

  • Steinhaüser C, Berger T, Frotscher M, Kettenmann H (1992) Heterogeneity in the membrane current pattern of identified glial cells in the hippocampal slice. Eur J Neurosci 4(6):472–484

    Article  PubMed  Google Scholar 

  • Steinmetz CC, Turrigiano GG (2010) Tumor necrosis factor-\(\upalpha \) signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci 30(44):14685–14690

    Google Scholar 

  • Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-\(\upalpha \). J Neurosci 25(12):3219–3228

    Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SWM, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Stevens J-LR, Law JS, Antolík J, Bednar JA (2013) Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. J Neurosci 33(40):15747–15766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stout CE, Costantin JL, Naus CCG, Charles AC (2002) Intercellular calcium signaling in astocytes via ATP release through connexin hemichannels. J Biol Chem 277(12):10482–10488

    Article  CAS  PubMed  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X\(_7\) receptors mediate ATP release and amplification of astrocytic intercellular Ca\(^{2+}\) signaling. J Neurosci 26(5):1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara I, Lang EJ, Llinás R (1993) Uniform olivocerebellar conduction time underlies purkinje cell complex spike synchronicity in the rat cerebellum. J Physiol 470(1):243–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntely G, Wlaker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda M, Nelson DJ, Soliven B (1995) Calcium signaling in cultured rat oligodendrocytes. Glia 14(3):225–236

    Article  CAS  PubMed  Google Scholar 

  • Tani H, Dulla CG, Farzampour Z, Taylor-Weiner A, Huguenard JR, Reimer RJ (2014) A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron 81(4):888–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasaki I, Chang JJ (1958) Electric response of glia cells in cat brain. Science 128(3333):1209–1210

    Article  CAS  PubMed  Google Scholar 

  • Thurley K, Falcke M (2011) Derivation of Ca\(^{2+}\) signals from puff properties reveals that pathway function is robust against cell variability but sensitive for control. Proc Nat Acad Sci USA 108(1):427–432

    Article  CAS  PubMed  Google Scholar 

  • Thurley K, Skupin A, Thul R, Falcke M (2012) Fundamental properties of Ca\(^{2+}\) signals. Biochim Biophys Acta 1820:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Thurley K, Tovey SC, Moenke G, Prince VL, Meena A, Thomas AP, Skupin A, Taylor CW, Falcke M (2014) Reliable encoding of stimulus intensities within random sequences of intracellular Ca\(^{2+}\) spikes. Sci Signaling 7(331):ra59

    Article  CAS  Google Scholar 

  • Tomassy GS, Berger DR, Chen H, Kasthuri N, Hayworth KJ, Vercelli A, Seung HS, Lichtman JW, Arlotta P (2014) Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344(6181):319–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay M-È, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8(11):e1000527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsodyks M (2005) Activity-dependent transmission in neocortical synapses. In: Chow C, Gutkin B, Hansel D, Meunier C, Dalibard J (eds) Methods and models in neurophysics (Chap. 7). Elsevier, Amsterdam, pp 245–265

    Google Scholar 

  • Tsvetkov E, Shin R-M, Bolshakov VY (2004) Glutamate uptake determines pathway specificity of long-term potentiation in the neural circuitry of fear conditioning. Neuron 41(1):139–151

    Article  CAS  PubMed  Google Scholar 

  • Ullah G, Cressman JR Jr, Barreto E, Schiff SJ (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. J Comput Neurosci 26(2):171–183

    Article  PubMed  Google Scholar 

  • Ullén F (2009) Is activity regulation of late myelination a plastic mechanism in the human nervous system? Neuron Glia Biol 5(1–2):29–34

    Article  PubMed  Google Scholar 

  • Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Nat Acad Sci 107(41):17757–17762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valtcheva S, Venance L (2016) Astrocytes gate Hebbian synaptic plasticity in the striatum. Nat Commun 7:13845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19(16):6897–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbich D, Prenosil GA, Chang PK-Y, Murai KK, McKinney RA (2012) Glial glutamate transport modulates dendritic spine head protrusions in the hippocampus. Glia 60(7):1067–1077

    Article  PubMed  Google Scholar 

  • Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-\(\gamma \). J Immunol 166(10):6383–6391

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Kettenmann H (1996) Calcium signaling in glial cells. Trends Neurosci 19:346–352

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Nedergaard M (2016) The homeostatic astroglia emerges from evolutionary specialization of neural cells. Phil Trans R Soc B 371(1700):20150428

    Article  PubMed  PubMed Central  Google Scholar 

  • Violin JD, DiPilato LM, Yildirim N, Elston TC, Zhang J, Lefkowitz RJ (2008) \(\upbeta \)2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 283(5):2949–2961

    Google Scholar 

  • Volman V, Bazhenov M, Sejnowski TJ (2013) Divide and conquer: functional segregation of synaptic inputs by astrocytic microdomains could alleviate paroxysmal activity following brain trauma. PLoS Comput Biol 9(1):e1002856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca\(^{2+}\) signalling: an unexpected complexity. Nat Rev Neurosci 15:327–334

    Article  CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472(7344):443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waehneldt TV, Matthieu J-M, Jeserich G (1986) Appearance of myelin proteins during vertebrate evolution. Neurochem Int 9(4):463–474

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217

    Article  CAS  PubMed  Google Scholar 

  • Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36(4–5):291–300

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca\(^{2+}\) signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823

    Article  CAS  PubMed  Google Scholar 

  • Witcher M, Kirov S, Harris K (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55(1):13–23

    Article  PubMed  Google Scholar 

  • Wu X, Pan L, Liu Y, Jiang P, Lee I, Drevensek-Olenik I, Zhang X, Xu J (2013) Cell-cell communication induces random spikes of spontaneous calcium oscillations in multi-BV-2 microglial cells. Biochem Biophys Res Commun 431(4):664–669

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Qi Y, Yang Y (2015) Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine a1 receptors. Cell Rep 11(5):798–807

    Article  CAS  PubMed  Google Scholar 

  • Ying W (2008) NAD\(^+\)/NADH and NADP\(^+\)/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10(2):179–206

    Article  CAS  PubMed  Google Scholar 

  • Young KM, Psachoulia K, Tripathi RB, Dunn S, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalc B, Colman DR (2000) Origins of vertebrate success. Science 288(5464):271–271

    Article  CAS  PubMed  Google Scholar 

  • Zalc B, Goujet D, Colman D (2008) The origin of the myelination program in vertebrates. Curr Biol 18(12):R511–R512

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–40

    Article  CAS  Google Scholar 

  • Zorec R, Araque A, Carmignoto G, Haydon P, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: An appraisal of Ca\(^{2+}\) as a signaling route. ASN Neuro 4(2):e00080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

MDP acknowledges the support of Pôle emploi Rhône-Alpes and of the Junior Leader Postdoctoral Fellowship Program by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006). Completion of this chapter was also possible thank to the support of the Basque Government by the BERC 2018–2021 program and by the Spanish Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio De Pittà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Pittà, M., Berry, H. (2019). A Neuron–Glial Perspective for Computational Neuroscience. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_1

Download citation

Publish with us

Policies and ethics