Skip to main content

Multiview CNN Model for Sensor Fusion Based Vehicle Detection

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Included in the following conference series:

Abstract

The self-diving vehicle is a critical revolution in the automobile industry, transportation and people’s daily life. Generally, self-driving vehicles utilize the LIDAR, IMU, radar along with traditional optical cameras for sensing surrounding environment. Therefore, on road object detection can be improved by utilizing multiview of LIDAR and camera instead of single sensor. In this paper, we propose a sensor data fusion-based multiview CNN model for on road vehicle detection. We first up-sample the sparse LIDAR point cloud as gray images, and then combine the up-sampled gray image (F channel) with the camera image (RGB channels) as four-channel fusion data to train a CNN model. To reduce the redundant data, we tested the performance of CNN models by different fusion schemes. In this way, we can reduce the consumption of the CNN model in both training and on board testing for vehicular environment. Our final fusion model (RBF) can reach an average accuracy of 82% on the real trace dataset of KITTI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borenstein, J., Herkert, J., Miller, K.: Self-driving cars: ethical responsibilities of design engineers. IEEE Technol. Soc. Mag. 36(2), 67–75 (2017)

    Article  Google Scholar 

  2. Li, X., Chen, M., Nie, F., et al.: A multiview-based parameter free framework for group detection. In: AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  3. Chen, Z., Huang, X.: End-to-end learning for lane keeping of self-driving cars. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1856–1860 (2017)

    Google Scholar 

  4. Ouyang, Z., Niu, J., Liu, Y., et al.: Multiwave: a novel vehicle steering pattern detection method based on smartphones. In: IEEE International Conference on Communications, pp. 1–7. IEEE (2016)

    Google Scholar 

  5. Jafari, O.H., Yang, M.Y.: Real-time RGB-D based template matching pedestrian detection. In: IEEE International Conference on Robotics and Automation. IEEE (2016)

    Google Scholar 

  6. Tung, F., Chen, J., Meng, L., et al.: The raincouver scene parsing benchmark for self-driving in adverse weather and at night. IEEE Robot. Autom. Lett. 2(4), 2188–2193 (2017)

    Article  Google Scholar 

  7. Song, S., Chandraker, M.: Joint SFM and detection cues for monocular 3D localization in road scenes. In: Computer Vision and Pattern Recognition, pp. 3734–3742. IEEE (2015)

    Google Scholar 

  8. Geiger, A.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE Computer Society (2012)

    Google Scholar 

  9. Hwang, S., Park, J., Kim, N., et al.: Multispectral pedestrian detection: benchmark dataset and baseline. In: Computer Vision and Pattern Recognition, pp. 1037–1045. IEEE (2015)

    Google Scholar 

  10. Xue, J.R., Wang, D., Shao-Yi, D.U., et al.: A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars. Front. Inf. Technol. Electron. Eng. 18(1), 122–138 (2018)

    Article  Google Scholar 

  11. Dollar, P., Appel, R., et al.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1532–1545 (2014)

    Article  Google Scholar 

  12. Lin, Y., Abdelfatah, K., Zhou, Y., et al.: Co-interest person detection from multiple wearable camera videos, pp. 4426–4434 (2015)

    Google Scholar 

  13. Huang, Y., Zhu, F., Shao, L., et al.: Color object recognition via cross-domain learning on RGB-D images. In: IEEE International Conference on Robotics and Automation, pp. 1672–1677. IEEE (2016)

    Google Scholar 

  14. Gu, X., Zang, A., Huang, X., et al.: Fusion of color images and LIDAR data for lane classification. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–4 (2015)

    Google Scholar 

  15. Zhang, F., Clarke, D., Knoll, A.: Vehicle detection based on LIDAR and camera fusion. In: IEEE International Conference on Intelligent Transportation Systems, pp. 1620–1625. IEEE (2014)

    Google Scholar 

  16. Premebida, C., Carreira, J., Batista, J., et al.: Pedestrian detection combining RGB and dense LIDAR data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4112–4117. IEEE (2014)

    Google Scholar 

  17. Ouyang, Z., Niu, J., Liu, Y., et al.: A cGANs-based scene reconstruction model using LIDAR point cloud. In: Proceedings of the 15th IEEE International Symposium on Parallel and Distributed Processing with Applications (2017)

    Google Scholar 

  18. Liu, W., Ji, R., Li, S.: Towards 3D object detection with bimodal deep Boltzmann machines over RGBD imagery. In: Computer Vision and Pattern Recognition, pp. 3013–3021. IEEE (2015)

    Google Scholar 

  19. Qi, C.R., Su, H., Nießner, M., et al.: Volumetric and multi-view CNNs for object classification on 3D data, pp. 5648–5656 (2016)

    Google Scholar 

  20. Girshick, R., Donahue, J., Darrell, T., Malik J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  21. Girshick R.: Fast R-CNN. Computer Science (2015)

    Google Scholar 

  22. Ren, S., Girshick, R., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2015)

    Article  Google Scholar 

  23. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  24. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788. IEEE Computer Society (2016)

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger, pp. 6517–6525 (2016)

    Google Scholar 

  26. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D lidar using fully convolutional network. In: Robotics: Science and Systems (2016)

    Google Scholar 

  27. Asvadi, A., Garrote, L., Premebida, C., Peixoto, P., Nunes, U.J.: Real-time deep convnet-based vehicle detection using 3D-LIDAR reflection intensity data. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds.) ROBOT 2017. AISC, vol. 694, pp. 475–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70836-2_39

    Chapter  Google Scholar 

  28. Asvadi, A., Garrote, L., Premebida, C., et al.: DepthCN: vehicle detection using 3D-LIDAR and ConvNet. In: IEEE International Conference on Intelligent Transportation Systems. IEEE (2017)

    Google Scholar 

  29. Wang, X., Nie, L., Song, X., et al.: Unifying virtual and physical worlds: learning toward local and global consistency. ACM Trans. Inf. Syst. 36(1), 1–26 (2017)

    Article  Google Scholar 

  30. Chen, J., Song, X., Nie, L., et al.: Micro tells macro: predicting the popularity of micro-videos via a transductive model. In: ACM on Multimedia Conference, pp. 898–907. ACM (2016)

    Google Scholar 

Download references

Acknowledgement

This work has been supported by National Key R&D Program of China (2017YFB1301100), National Natural Science Foundation of China (61572060, 61772060, 61728201), State Key Laboratory of Software Development Environment(No. 2016YFC1300205), and CERNET Innovation Project (NGII20160316, NGII20170315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouyang, Z., Wang, C., Liu, Y., Niu, J. (2018). Multiview CNN Model for Sensor Fusion Based Vehicle Detection. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics