Skip to main content

Assembly-Based 3D Modeling Using Graph Convolutional Neural Networks

  • Conference paper
  • First Online:
  • 3159 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Abstract

Assembly-based methods make 3D shape modelling convenient and effective even for non-expert users. However, it is still difficult to choose a reasonable component from an unlabeled shape dataset. In this work, the spectral graph convolutional neural networks (graph CNNs) are used to label a subcomponent in the given shape by their context information and geometry features using convolution operation. Then an appropriate component to replace the above labeled component is found by the same network according to their labels from shapes database. After replacing the component, reasonable results can be obtained in most experiments, which prove the reliability of our method. In addition, we found that the use of dropout and residual could greatly improve the training and performance. The context information, compared with the geometry features, is more effective in creating new shapes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kalogerakis, E., Chaudhuri, S., Koller, D., et al.: A probabilistic model for component-based shape synthesis. ACM Trans. Graph. (TOG) 31(4), 55 (2012)

    Article  Google Scholar 

  2. Su, X., Chen, X., Fu, Q., et al.: Cross-class 3D object synthesis guided by reference examples. Comput. Graph. 54, 145–153 (2016)

    Article  Google Scholar 

  3. Zheng, Y., Cohen-Or, D., Mitra, N.J.: Smart variations: functional substructures for part compatibility. Comput. Graph. Forum 32(2pt2), 195–204 (2013)

    Article  Google Scholar 

  4. Funkhouser, T., Kazhdan, M., Shilane, P., et al.: Modeling by example. ACM Trans. Graph. (TOG) 23(3), 652–663 (2004)

    Article  Google Scholar 

  5. Shen, C.H., Fu, H., Chen, K., et al.: Structure recovery by part assembly. ACM Trans. Graph. (TOG) 31(6), 180 (2012)

    Article  Google Scholar 

  6. Jaiswal, P., Huang, J., Rai, R.: Assembly-based conceptual 3D modeling with unlabeled components using probabilistic factor graph. Comput. Aided Des. 74, 45–54 (2016)

    Article  Google Scholar 

  7. Xu, K., Kim, V.G., Huang, Q. et al.: Data-driven shape analysis and processing. SIGGRAPH ASIA 2016 Courses, p. 4. ACM (2016)

    Google Scholar 

  8. Sung, M., Su, H., Kim, V.G., et al.: Complementme: weakly-supervised component suggestions for 3D modeling. ACM Trans. Graph. (TOG) 36(6), 226 (2017)

    Article  Google Scholar 

  9. Qi, C.R., Su, H., Mo, K., et al.: Pointnet: deep learning on point sets for 3D classification and segmentation. Proc. CVPR IEEE 1(2), 4 (2017)

    Google Scholar 

  10. Wu, Z., Song, S., Khosla, A. et al.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  11. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs (2013). arXiv preprint arXiv:1312.6203

  12. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29, 3844–3852 (2016)

    Google Scholar 

  13. Shuman, D.I., Narang, S.K., Frossard, P., et al.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). arXiv preprint arXiv:1609.02907

  15. Princeton ModelNet. http://modelnet.cs.princeton.edu/. Accessed 21 May 2018

  16. Alhashim, I., Xu, K., Zhuang, Y., et al.: Deformation-driven topology-varying 3D shape correspondence. ACM Trans. Graph. (TOG) 34(6), 236 (2015)

    Article  Google Scholar 

  17. Kaick, O.V., Fish, N., Kleiman, Y., et al.: Shape segmentation by approximate convexity analysis. ACM Trans. Graph. (TOG) 34(1), 4 (2014)

    Article  Google Scholar 

  18. Chen, D.Y., Tian, X.P., Shen, Y.T., et al.: On visual similarity based 3D model retrieval. Comput. Graph. Forum. 22(3), 223–232 (2003)

    Article  Google Scholar 

  19. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249 (2008)

    Article  Google Scholar 

  20. Li, R., Wang, S., Zhu, F. et al.: Adaptive graph convolutional neural networks (2018). arXiv preprint arXiv:1801.03226

  21. Srivastava, N., Hinton, G., Krizhevsky, A., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. He, K., Zhang, X., Ren S, et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National High Technology Research and Development Program of China (No. 2007AA01Z334), National Natural Science Foundation of China (Nos. 61321491 and 61272219), Program for New Century Excellent Talents in University of China (NCET-04-04605), the China Postdoctoral Science Foundation (Grant No. 2017M621700) and Innovation Fund of State Key Lab for Novel Software Technology (Nos. ZZKT2013A12, ZZKT2016A11 and ZZKT2018A09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxing Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, X., Sun, Z., Li, Q., Shi, J. (2018). Assembly-Based 3D Modeling Using Graph Convolutional Neural Networks. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics