Skip to main content

A Flower Classification Framework Based on Ensemble of CNNs

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Included in the following conference series:

Abstract

Currently, the classification of flower species has become a hot topic in the field of image classification. Flower classification belongs to the category of fine image classification, and such images are usually represented by multiple visual features. At present, all the flower classification methods based on a single convolutional neural network (CNN) model can hardly extract the features of a flower image as much as possible. In view of the limitation of description methods for flower features and the problem of low accuracy of flower species recognition, this paper proposes a flower classification framework based on ensemble of CNNs. The method consists of the following three parts: (1) The same flower image is processed differently to make the color, texture and gradient of the flower image more prominent; (2) Fine-tune the structure and parameters of the convolutional neural network to adapt it to the extraction of corresponding features. Then use the CNN model with different characteristics to extract the corresponding features; and (3) A framework that can fuse each CNN sub-learner is used to combine various features effectively. We tested the effectiveness of our method on the Oxford Flowers 102 Dataset [2]. The result demonstrates that the proposed approach effectively improves the accuracy of flower classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: Computer Vision, Graphics & Image Processing, pp. 722–729 (2009)

    Google Scholar 

  2. Nilsback, M.E., Zisserman, A.: An automatic visual flora-segmentation and classification of flower images. Ph.D. thesis, University of Oxford (2009)

    Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing System, pp. 1097–1105 (2012)

    Google Scholar 

  4. Angelova, A., Zhu, S.: Efficient object detection and segmentation for fine-grained recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 811–818 (2013)

    Google Scholar 

  5. Murray, N., Perronnin, F.: Generalized max pooling. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2473–2480 (2014)

    Google Scholar 

  6. Nilsback, M.E., Zisserman, A.: Delving into the Whorl of flower segmentation. In: Proceedings of the British Machine Vision Conference, pp. 1049–1062 (2007)

    Google Scholar 

  7. Chai, Y., Lempitsky, V., Zisserman, A.: Bicos: a bi-level co-segmentation method for image classification. In: IEEE International Conference on Computer Vision, pp. 2579–2586 (2012)

    Google Scholar 

  8. Ito, S., Kubota, S.: Object classification using heterogeneous co-occurrence features. In: European Conference on Computer Vision, pp. 701–714 (2010)

    Chapter  Google Scholar 

  9. Liu, Y., Tang, F., Zhou, D., Meng, Y., Dong, W.: Flower classification via convolutional neural network. In: IEEE International Conference on Functional-Structural Plant Growth Modeling, pp. 110–116(2017)

    Google Scholar 

  10. Yu, K., Jia, L., Chen, Y., Xu, W.: Deep learning: yesterday, today, and tomorrow. J. Comput. Res. Dev. 20(6), 1349 (2013)

    Google Scholar 

  11. Wu, X., Gao, L., Yan, M., Zhao, F.: Flower species recognition based on fusion of multiple features. J. Beijing For. Univ. 39(4), 86–93 (2017)

    Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  13. Varma, M., Ray, D.: Learning the discriminative power-invariance trade-off. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  14. Saitoh, T., Kaneko, T.: Automatic recognition of wild flowers. J. Syst. Comput. Jpn. 34(10), 90–101 (2000)

    Article  Google Scholar 

  15. Mishra, P.K., Maurya, S.K., Singh, R.K., Misra, A.K.: A semi automatic plant identification based on digital leaf and flower images. In: International Conference on Advances in Engineering, pp. 68–73 (2012)

    Google Scholar 

  16. Liu, Y., Yao, X.: Ensemble learning via negative correlation. J. Neural Netw. 12(10), 1399–1404 (1999)

    Article  Google Scholar 

  17. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  18. Kuncheva, L.I.: Combining pattern classifiers: methods and algorithms. IEEE Trans. Neural Netw. 18, 964 (2007)

    Article  Google Scholar 

  19. Qi, G., Hua, X., Zhang, H.: Learning semantic distance from community-tagged media collection. In: International ACM Conference on Multimedia, pp. 243–252 (2009)

    Google Scholar 

  20. Qi, G., Aggarwal, C., Huang, T.: Link prediction across networks by biased cross-network sampling. In: IEEE International Conference on Data Engineering, pp. 793–804 (2013)

    Google Scholar 

  21. Yan, C., Li, L., Zhang, C., Liu, B., Zhang, Y., Dai, Q.: An effective Uyghur text detector for complex background images. IEEE Trans. Multimed. 99, 1 (2018)

    Article  Google Scholar 

  22. Kociołek, M., Materka, A., Strzelecki, M., Szczypiński, P.: Discrete wavelet transform—derived features for digital image texture analysis. In: International Conference on Signals and Electronic Systems, pp. 514–524 (2001)

    Google Scholar 

  23. Furht, B.: Discrete wavelet transform (DWT). In: Furht, B. (ed.) Encyclopedia of Multimedia. Springer, Boston (2006). https://doi.org/10.1007/0-387-30038-4

    Chapter  Google Scholar 

  24. Guru, D.S., Kumar, Y.H.S., Manjunath, S.: Textural features in flower classification. Math. Comput. Model. 54(3–4), 1030–1036 (2011)

    Article  Google Scholar 

  25. Seeland, M., Rzanny, M., Alaqraa, N., Wäldchen, J., Mäder, P.: Plant species classification using flower images—a comparative study of local feature representations. Plos One 12(2), e0170629 (2017)

    Article  Google Scholar 

  26. Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1447–1454 (2006)

    Google Scholar 

  27. Nocak, C.L., Shafer, S.A.: Color edge detection. In: Proceedings DARPA Image Understanding Workshop, pp. 35–37(1987)

    Google Scholar 

  28. Dutta, D., Chaudhuri, B.B.: A color edge detection algorithm in RGB color space. In: International Conference on Advances in Recent Technologies in Communication and Computing, pp. 337–340(2009)

    Google Scholar 

  29. Gehler, P., Nowozin, S.: On feature combination for multiclass object classification. IEEE International Conference on Computer Vision, pp. 221–228 (2010)

    Google Scholar 

  30. He, N., Cao, J., Song, L.: Scale space histogram of oriented gradients for human detection. Int. Symp. Inf. Sci. Eng. 2, 167–170 (2008)

    Google Scholar 

  31. Bosch, A., Zisserman, A., Munoz, X.: ACM International Conference on Image and Video Retrieval, pp. 401–408 (2007)

    Google Scholar 

  32. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)

    Google Scholar 

  33. Wang, P., Li, L., Yan, C.: Image classification by principal component analysis of multi-channel deep feature. In: IEEE Global Conference on Signal and Information Processing, pp. 696–700 (2017)

    Google Scholar 

  34. Yan, C., Xie, H., Yang, D., Yin, J., Zhang, Y., Dai, Q.: Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans. Intell. Transp. Syst. 19, 284–295 (2017)

    Article  Google Scholar 

  35. Yan, C., Xie, H., Liu, S., Yin, J., Zhang, Y., Dai, Q.: Effective Uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans. Intell. Transp. Syst. 19, 220–229 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggang Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, B., Hu, Y., Sun, Y., Hao, X., Yan, C. (2018). A Flower Classification Framework Based on Ensemble of CNNs. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics