Topological Data Analysis of Functional MRI Connectivity in Time and Space Domains

  • Keri L. AndersonEmail author
  • Jeffrey S. Anderson
  • Sourabh Palande
  • Bei Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11083)


The functional architecture of the brain can be described as a dynamical system where components interact in flexible ways, constrained by physical connections between regions. Using correlation, either in time or in space, as an abstraction of functional connectivity, we analyzed resting state fMRI data from 1003 subjects. We compared several data preprocessing strategies and found that independent component-based nuisance regression outperformed other strategies, with the poorest reproducibility in strategies that include global signal regression. We also found that temporal vs. spatial functional connectivity can encode different aspects of cognition and personality. Topological analyses using persistent homology show that persistence barcodes are significantly correlated to individual differences in cognition and personality, with high reproducibility. Topological data analyses, including approaches to model connectivity in the time domain, are promising tools for representing high-level aspects of cognition, development, and neuropathology.



This work was supported by NIH grants R01EB022876, R01MH080826, and NSF grant IIS-1513616.

Supplementary material

473761_1_En_8_MOESM1_ESM.pdf (17.6 mb)
Supplementary material 1 (pdf 17995 KB)


  1. 1.
    Allen, E., et al.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2009)CrossRefGoogle Scholar
  2. 2.
    Barch, D., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. NeuroImage 80, 169–189 (2013)CrossRefGoogle Scholar
  3. 3.
    Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carstens, C.J., Horadam, K.J.: Persistent homology of collaboration networks. Math. Prob. Eng. 2013 (2013)Google Scholar
  5. 5.
    Chen, J.E., Chang, C., Greicius, M.D., Glover, G.H.: Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics. NeuroImage 111, 476–488 (2015)CrossRefGoogle Scholar
  6. 6.
    Cicchetti, D.: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 6(4), 284–290 (1994)CrossRefGoogle Scholar
  7. 7.
    Costa, P.T., McCrae, R.R.: Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) manual. In: Psychological Assessment Resources (1992)Google Scholar
  8. 8.
    Dubois, J., Galdi, P., Paul, L.K., Adolphs, R.: A distributed brain network predicts general intelligence from resting-state human neuroimaging data. bioRxiv (2018).
  9. 9.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  10. 10.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fasy, B.T., Kim, J., Lecci, F., Maria, C.: Introduction to the R package TDA. ArXiv:1411.1830 (2015)
  12. 12.
    Fischl, B., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)CrossRefGoogle Scholar
  13. 13.
    Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45, 61–75 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gordon, E., et al.: Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 16(1), 288–303 (2016)CrossRefGoogle Scholar
  15. 15.
    Griffanti, L., et al.: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95, 232–247 (2014)CrossRefGoogle Scholar
  16. 16.
    Jung, R., Haier, R.: The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav. Brain Sci. 30(2), 135–154 (2007)CrossRefGoogle Scholar
  17. 17.
    Karahanoǧlu, F., Van De Ville, D.: Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat. Commun. 6, 7751 (2015)CrossRefGoogle Scholar
  18. 18.
    Keilholz, S., Caballero-Gaudes, C., Bandettini, P., Deco, G., Calhoun, V.: Time-resolved resting-state functional magnetic resonance imaging analysis: Current status, challenges, and new directions. Brain Connectivity 7(8), 465–481 (2017)CrossRefGoogle Scholar
  19. 19.
    Lee, H., Chung, M.K., Kang, H., Kim, B.N., Lee, D.S.: Discriminative persistent homology of brain networks. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 841–844 (2011)Google Scholar
  20. 20.
    Murphy, K., Fox, M.D.: Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage 154, 169–173 (2017)CrossRefGoogle Scholar
  21. 21.
    Nielsen, J.A., Zielinski, B.A., Ferguson, M.A., Lainhart, J.E., Anderson, J.S.: An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. PLoS One 8(8), e71275 (2013)CrossRefGoogle Scholar
  22. 22.
    Pelphrey, K., Morris, J., McCarthy, G.: Grasping the intentions of others: the perceived intentionality of an action influences activity in the superior temporal sulcus during social perception. J. Cogn. Neurosci. 16(10), 1706–1716 (2004)CrossRefGoogle Scholar
  23. 23.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  24. 24.
    Saggar, M., et al.: Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nat. Commun. 9(1), 1399 (2018)CrossRefGoogle Scholar
  25. 25.
    Shah, L.M., Cramer, J.A., Ferguson, M.A., Birn, R.M., Anderson, J.S.: Reliability and reproducibility of individual differences in functional connectivity acquired during task and resting state. Brain Behav. 6(5), e00456 (2016)CrossRefGoogle Scholar
  26. 26.
    Van Essen, D., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)CrossRefGoogle Scholar
  27. 27.
    Wong, E., et al.: Kernel partial least squares regression for relating functional brain network topology to clinical measures of behavior. In: International Symposium on Biomedical Imaging (2016)Google Scholar
  28. 28.
    Yeo, B., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)CrossRefGoogle Scholar
  29. 29.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Keri L. Anderson
    • 1
    Email author
  • Jeffrey S. Anderson
    • 1
  • Sourabh Palande
    • 1
  • Bei Wang
    • 1
  1. 1.University of UtahSalt Lake CityUSA

Personalised recommendations