Advertisement

Polymer-Based Catalysts for Water Purification: Fundamentals to Applications

  • S. K. ShuklaEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The recent developments in the synthesis of polymer-based photocatalysts, photosensitizers, and hybrid photocatalysts along with their properties and potential applications in degradation of water pollutants have been presented. Polymer functions as photocatalysts, catalytic supports, and photosensitizers in pure as well as in composite form. The photocatalysts generate very reactive oxygen species (ROS), which efficiently oxidizes several pollutants such as dyes, pesticides, pharmaceuticals, and microorganism present in water. Polymeric and hybrid photocatalysts are especially well suited for removal of chemical compounds, which are present at low concentrations in water resources due to synergistic effect. The advantages for the use of photoactive polymeric are easy removal and long life, and control of the formation of secondary contamination is avoided.

References and Future Readings

  1. 1.
    Pichat P, Oills D (2013) Photocatalytic treatment of water: Irradiance influences. In: Pichat P. (ed) Photocatalysis and water purification: From fundamentals to recent applications, 1st edn. Wiley-VCH Verlag GmbH & Co., KGaA, Germany, pp 311–333Google Scholar
  2. 2.
    Korina E, Stoilova O, Manolova N, Rashkov I (2018) Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. J Environ Chem Eng 6:2075–2084CrossRefGoogle Scholar
  3. 3.
    a. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marin BJ, Mayes AM (2017) Science and technology for water purification in the coming decades. Nature 5(2):301–310. b. Mamaghani AH, Haghighat F, Lee C-S (2017) Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B 203:247–269Google Scholar
  4. 4.
    Borges ME, García DM, Hernández T, Ruiz-Morales JC, Esparza P (2015) Supported photocatalyst for removal of emerging contaminants from wastewater in a continuous packed-bed photoreactor configuration. Catalysts 5:77–87CrossRefGoogle Scholar
  5. 5.
    Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Colmenares JC, Kuna E (2017) Photoactive hybrid catalysts based on natural and synthetic polymers: a comparative overview. Molecules 22:790CrossRefGoogle Scholar
  7. 7.
    Gong B, Peng Q, Na JS, Parsons GN (2011) Highly active photocatalytic ZnO nanocrystalline rods supported on polymer fiber mats: synthesis using atomic layer deposition and hydrothermal crystal growth. Appl Catal A Gen 407:211–216CrossRefGoogle Scholar
  8. 8.
    Moafi HF, Shojaie AF, Zanjanchi MA (2011) Semiconductor-assisted self-cleaning polymeric fibers based on zinc oxide nanoparticles. J Appl Polym Sci 121:3641–3650CrossRefGoogle Scholar
  9. 9.
    Li C, Chen R, Zhang X, Shu S, Xiong J, Zheng Y, Dong W (2011) Electrospinning of CeO2–ZnO composite nanofibers and their photocatalytic property. Mater Lett 65:1327–1330CrossRefGoogle Scholar
  10. 10.
    Baruah S, Thanachayanont C, Dutta J (2008) Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci Technol Adv Mater 9:025009PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zhang Z, Shao C, Li X, Zhang L, Xue H, Wang C, Liu Y (2010) Electrospun nanofibers of ZnO/SnO2 heterojunction with high photocatalytic activity. J Phys Chem C 114:7920–7925CrossRefGoogle Scholar
  12. 12.
    Ariffin SN, Lima HN, Jumeri FA, Zobir M, Abdullah AH, Ahmad M, Ibrahim NA, Huang NM, Teo PS, Muthoosamy K et al (2014) Modification of polypropylene filter with metal oxide and reduced graphene oxide for water treatment. Ceram Int 40:6927–6936CrossRefGoogle Scholar
  13. 13.
    Liu H, Yang J, Liang J, Huang J, Tang C (2008) ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. J Am Chem Soc 91:1287–1291Google Scholar
  14. 14.
    Zeng J, Liu S, Cai J, Zhang L (2010) TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol underweak UV light irradiation. J Phys Chem C 114:7806–7811CrossRefGoogle Scholar
  15. 15.
    Choia C, Hwanga KJ, Kimb YJ, Kimb G, Parkc JY, Sungho J (2016) Rice-straw-derived hybrid TiO2–SiO2 structures with enhanced photocatalytic properties for removal of hazardous dye in aqueous solutions. Nano Energy 20:76–83CrossRefGoogle Scholar
  16. 16.
    Hassan M, Abou-Zeid R, Hassan E, Berglund L, Aitomäki Y, Oksman K (2017) Membranes based on cellulose nanofibers and activated carbon for removal of Escherichia coli bacteria from water. Polymers 9(8):335CrossRefGoogle Scholar
  17. 17.
    Cao S, Low J, Yu J, Jaron M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27(13):2150–2176PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zare IN, Motahari A, Sillanpää M (2018) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/ dyes: a review. Environ Res 162:173–195PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Heng PH, Sun Y, Liu X (2018) In situ polymerization synthesis of Z-scheme tungsten trioxide/polyimide photocatalyst with enhanced visible-light photocatalytic activity. Appl Surf Sci 428:1130–1140CrossRefGoogle Scholar
  20. 20.
    Shukla SK, Shukla Sudheesh K, Govender Penny P, Agorku Eric S (2016) A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix. Microchim Acta 183:573–580CrossRefGoogle Scholar
  21. 21.
    Pandey N, Shukla SK, Singh NB (2017) Water purification by polymer nanocomposites: an overview. Nanocomposites 3(2):47–66CrossRefGoogle Scholar
  22. 22.
    Muktha B, Madras G, Gururow TN, Scherf U, Patil S (2007) Conjugated polymers for photocatalysis. J Phys Chem B 111(28):7994–7998PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ghosh S et al (2015) Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater 14:505–511PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Yin Z, Zheng Q (2012) Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv Energy Mater 2:179–218CrossRefGoogle Scholar
  25. 25.
    Ghosh S, Kouame NA, Remita S, Ramos L, Goubard F, Aubert P-H, Dazzi1 A, Deniset-Besseau A, Remita H (2015) Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Sci Rep 5:18002Google Scholar
  26. 26.
    United States (12) Patent Application Publication (10) Pub. No.: US 2005/0154198A1Google Scholar
  27. 27.
    Colmenares JC, Nair V, Kuna E, Łomot D (2018) Development of photocatalyst coated fluoropolymer based microreactor using ultrasound for water remediation. Ultrason Sonochem 41:297–302PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Cai L, Li Y, Li Y, Wang H, Yu Y, Liu Y, Duan Q (2018) Synthesis of zincphthalocyanine-based conjugated microporous polymers with rigid-linker as novel and green heterogeneous photocatalysts. J Hazard Mater 348:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Meng P, Heng H, Sun Y, Huang J, Yang J, Liu X (2018) Positive effects of phosphotungstic acid on the in-situ solid-state polymerization and visible light photocatalytic activity of polyimide-based photocatalyst. Appl Catal B 226:487–498CrossRefGoogle Scholar
  30. 30.
    Do J-L, Frisčic T (2017) Mechanochemistry: a force of synthesis. ACS Cent Sci 3:13–19PubMedCrossRefGoogle Scholar
  31. 31.
    Rajput L, Banerjee R (2014) Mechanochemical synthesis of amide functionalized porous organic polymers. Cryst Growth Des 14(6):2729–2732CrossRefGoogle Scholar
  32. 32.
    Gupta A, Saurav JR, Bhattacharya S (2015) Solar light based degradation of organic pollutants using ZnO nanobrushes for water filtration. RSC Adv 5:71472CrossRefGoogle Scholar
  33. 33.
    Zhou Y-B, Zhan Z-P (2018) Conjugated microporous polymers for heterogeneous catalysis. Chem Asian J 13:9–19PubMedCrossRefGoogle Scholar
  34. 34.
    Mauro AD, Cantarella M, Nicotra G, Pellegrino G, Gulino A, Brundo MV, Privitera V, Impellizzeri G (2017) Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Sci Rep 7:40895PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cirillo G, Nicoletta FP, Curcio M, Spizzirri UG, Picci N, Iemma F (2014) Enzyme immobilization on smart polymers: catalysis on demand. React Funct Polym 83:62–69CrossRefGoogle Scholar
  36. 36.
    Barbosa O, Torres R, Ortiz C, Berenguer-Murcia Á, Rodrigues RC, Fernandez-Lafuente R (2013) Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromol 14(8):2433–2462CrossRefGoogle Scholar
  37. 37.
    Lewis SR, Datta S, Gui M, Coker EL, Huggins FE, Daunert S, Bachas L, Bhattacharyya D (2011) Reactive nanostructured membranes for water purification. PNAS 108:8577–8582PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lu J, Toy PH (2009) Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem Rev 109(2):815–838PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Benaglia M, Puglisi A, Cozzi F (2003) Polymer-supported organic catalysts. Chem Rev 103(9):3401–3430PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Naskar S, Pillay AS, Chanda M (1998) Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet. J Photochem Photobiol A Chem 3:257–264CrossRefGoogle Scholar
  41. 41.
    Jin L, Wu H, Morbidelli M (2015) Synthesis of water-based dispersions of polymer/TiO2 hybrid nanospheres. Nanomaterials 5:1454–1468PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nabid MR, Golbabaee M, Moghaddam AB, Dinarvand R, Sedghi R (2008) Polyaniline/TiO2 nanocomposite: enzymatic synthesis and electrochemical properties. Int J Electrochem Sci 3:1117–1126Google Scholar
  43. 43.
    Wang X, Lu Q, Wang X, Joo J, Dahl M, Liu B, Gao C, Yin Y (2016) Photocatalytic surface-initiated polymerization on TiO2 toward well-defined composite nanostructures. ACS Appl Mater Interfaces 8(1):538–554PubMedCrossRefGoogle Scholar
  44. 44.
    Thandu M, Comuzzi C, Goi D (2015) Phototreatment of water by organic photosensitizers and comparison with inorganic semiconductors. Int J Photoenergy, Article ID 521367, 22 pagesGoogle Scholar
  45. 45.
    Tobin JM, McCabe TJD, Prentice AW, Holzer S, Lloyd GO, Paterson MJ, Arrighi V, Cormack PAG, Vilela F (2017) Polymer-supported photosensitizers for oxidative organic transformations in flow and under visible light irradiation. ACS Catal 7:4602–4612CrossRefGoogle Scholar
  46. 46.
    Valkov A, Nakonechny F, Nisnevitch M (2014) Polymer-immobilized photosensitizers for continuous eradication of bacteria. Int J Mol Sci 15:14984–14996PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Macdonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyr Phthalocyanines 5:105–129CrossRefGoogle Scholar
  48. 48.
    Costa L, Carvalho CMB, Faustino MAF, Neves MG, Tomé JPC, Tomé AC, Cavaleiro JAS, Cunha A, Almeida A (2010) Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters. Photochem Photobiol Sci 9:1126–1133PubMedCrossRefGoogle Scholar
  49. 49.
    Jasper JT, Sedlak DL (2013) Phototransformation of wastewater-derived trace organic contaminants in open-water unit process treatment wetlands. Environ Sci Technol 47:10781–10790PubMedCrossRefGoogle Scholar
  50. 50.
    Hussein FH (2012) Comparison between solar and artificial photocatalytic decolorization of textile industrial wastewater. Int J Photoenergy 2012:793648Google Scholar
  51. 51.
    DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233–234:351–371CrossRefGoogle Scholar
  52. 52.
    Nowakowska M, Kępczyński M (1998) Polymeric photosensitizers 2. Photosensitized oxidation of phenol in aqueous solution. J Photochem Photobiol 116:251–256CrossRefGoogle Scholar
  53. 53.
    Kandisa RV, Narayana Saibaba KV, Shaik KB, Gopinath R (2016) Dye removal by adsorption: a review. J Bioremediat Biodegrad 7(6)Google Scholar
  54. 54.
    Tunc O, Hacer T, Aksu Z (2009) Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. J Hazard Mater 163:187PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Renganathan S, Kalpana J, Kumar M, Velan M (2009) Equilibrium and Kinetic Studies on the Removal of Reactive Red 2 Dye from an Aqueous Solution Using a Positively Charged Functional Group of the Nymphaea rubra Biosorbent. CLEAN Soil Air Water 37:901Google Scholar
  56. 56.
    Valkov A, Nakonechny F, Nisnevitch M (2014) Polymer-immobilized photosensitizers for continuous eradication of bacteria. Int J Mol Sci 15:14984–14996PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wang RX, Wang W, Wang X, Zhang J, Gu Z, Zhou L, Zhao J (2015) Enhanced visible light photocatalytic activity of a floating photocatalyst based on B-N-codoped TiO2 grafted on expanded perlite. RSc Adv 5:41385–41392CrossRefGoogle Scholar
  58. 58.
    Yu Z, Mielczarski E, Mielczarski J, Laub C, Buffat P, Klehm U, Albers P, Lee K, Kulike A, Kiwi-Minerska L (2007) Preparation, stabilization and characterization of TiO2 on thin polyethylene films (LDPE). Photocatalytic applications. Water Res 41:862–874CrossRefGoogle Scholar
  59. 59.
    Ma S, Meng J, Li J, Zhang Y, Ni L (2014) Synthesis of catalytic polypropylene membranes enabling visible-light-driven photocatalytic degradation of dyes in water. J Membr Sci 453:221–229CrossRefGoogle Scholar
  60. 60.
    Zan L, Tian L, Liu Z, Peng Z (2004) A new polystyrene–TiO2 nanocomposite film and its photocatalytic degradation. Appl Catal A Gen 264:237–242CrossRefGoogle Scholar
  61. 61.
    Taylor DM, Lewis TJ (1971) Electrical conduction in polyethylene terephthalate and polyethylene films. J Phys D Appl Phys 4:1346–1354CrossRefGoogle Scholar
  62. 62.
    Wang D, Shi L, Luo Q, Li X, An J (2012) An efficient visible light photocatalyst prepared from TiO2 and polyvinyl chloride. J Mater Sci 47:2136–2145CrossRefGoogle Scholar
  63. 63.
    Araújo VD, Tranquilin RL, Motta FV, Paskocimas CA, Bernardi MIB, Cavalcante LS, Andres JS, Longo E, Bomio MRD (2014) Effect of polyvinyl alcohol on the shape, photoluminescence and photocatalytic properties of PbMoO4 microcrystals. Mater Sci Semicond Process 26:425–430CrossRefGoogle Scholar
  64. 64.
    Tennakone K, Tilakaratne CTK, Kottegoda IRM (1995) Photocatalytic degradation of organic contaminants in water with TiO2 supported on polyethene films. J Photochem Photobiol A Chem 87:177–179CrossRefGoogle Scholar
  65. 65.
    Ariffin SN, Lima HN, Jumeri FA, Zobir M, Abdullah AH, Ahmad M, Ibrahim NA, Huang NM, Teo PS, Muthoosamy K (2014) Modification of polypropylene filter with metal oxide and reduced graphene oxide for water treatment. Ceram Int 40:6927–6936CrossRefGoogle Scholar
  66. 66.
    Li M, Li G, Fan Y, Jiang J, Ding Q, Dai X, Mai K (2014) Effect of nano-ZnO-supported 13X zeolite on photo-oxidation degradation and antimicrobial properties of polypropylene random copolymer. Polym Bull 71:2981–2997CrossRefGoogle Scholar
  67. 67.
    Colmenares JC, Kuna E, Jakubiak S, Michalski J, Kurzydłowski K (2015) Polypropylene nonwoven filter with nanosized ZnO rods: promising hybrid photocatalyst for water purification. Appl Catal B Environ 170–171:273–282CrossRefGoogle Scholar
  68. 68.
    Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82CrossRefGoogle Scholar
  69. 69.
    Mamaghani AH, Haghighat F, Lee C-S (2017) Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B 203:247–269CrossRefGoogle Scholar
  70. 70.
    Gong B, Peng Q, Na JS, Parsons GN (2011) Highly active photocatalytic ZnO nanocrystalline rods supported on polymer fiber mats: synthesis using atomic layer deposition and hydrothermal crystal growth. Appl Catal A Gen 407:211–216CrossRefGoogle Scholar
  71. 71.
    Hong J, He Y (2014) Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332:67–75CrossRefGoogle Scholar
  72. 72.
    Moafi HF, Shojaie AF, Zanjanchi MA (2011) Semiconductor-assisted self-cleaning polymeric fibers based on zinc oxide nanoparticles. J Appl Polym Sci 121:3641–3650CrossRefGoogle Scholar
  73. 73.
    Sun L, Shi Y, Li B, Li X, Wang Y (2013) Preparation and characterization of polypyrrole/TiO2 nanocomposites by reverse microemulsion polymerization and its photocatalytic activity for the degradation of methyl orange under natural light. Polym Compos 34:1076–1080CrossRefGoogle Scholar
  74. 74.
    Ansari MO, Khan MM, Ansari SA, Cho MH (2015) Polythiophene nanocomposites for photodegradation applications: past, present and future. J Saudi Chem Soc 19:494–504CrossRefGoogle Scholar
  75. 75.
    Aizawa M, Watanabe S, Shinohara H, Shirakawa H (1985) Photodoping of polyacetylene films. J Chem Soc, Chem Commun 2:62–63CrossRefGoogle Scholar
  76. 76.
    Yang Y, Dan Y (2006) Preparation of poly(methyl methacrylate)/titanium oxide composite particles via in-situ emulsion polymerization. J Appl Polym Sci 101:4056–4063CrossRefGoogle Scholar
  77. 77.
    Zhang Z, Zheng T, Xu J, Zeng H (2016) Polythiophene/Bi2MoO6: a novel conjugated polymer/nanocrystal hybrid composite for photocatalysis. J Mater Sci 51:3846–3853CrossRefGoogle Scholar
  78. 78.
    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti MA (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Qiua J, Zhanga X, Feng Y, Zhang X, Wang H, Yao J (2018) Modified metal-organic frameworks as photocatalysts. Appl Catal B 231:317–342CrossRefGoogle Scholar
  80. 80.
    Ullah H, Tahir AA, Mallick TK (2017) Polypyrrole/TiO2 com composites for the application of photocatalysis. Sens Actuators B Chem 241:1161–1169CrossRefGoogle Scholar
  81. 81.
    Colmenares JC, Kuna E (2017) Photoactive hybrid catalysts based on natural and synthetic polymers: a comparative overview. Molecules 22:790CrossRefGoogle Scholar
  82. 82.
    Magalhães F, Mourab FCC, Lago RM (2011) TiO2/LDPE composites: a new floating photocatalyst for solar degradation of organic contaminants. Desalination 276:266–271CrossRefGoogle Scholar
  83. 83.
    Naskar S, Pillay AS, Chanda M (1998) Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet. J Photochem Photobiol A Chem 3:257–264CrossRefGoogle Scholar
  84. 84.
    Jin L, Wu H, Morbidelli M (2015) Synthesis of water-based dispersions of polymer/TiO2 hybrid nanospheres. Nanomaterials 5:1454–1468PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Nabid MR, Golbabaee M, Moghaddam AB, Dinarvand R, Sedghi R (2008) Polyaniline/TiO2 nanocomposite: Enzymatic synthesis and electrochemical properties. Int J Electrochem Sci 3:1117–1126Google Scholar
  86. 86.
    Li H, Fu S, Peng L (2013) Surface modification of cellulose fibers by layer-by-layer self-assembly of lignosulfonates and TiO2 nanoparticles: effect on photocatalytic abilities and paper properties. Fibers Polym 14:1794–1802CrossRefGoogle Scholar
  87. 87.
    Zeng J, Liu S, Cai J, Zhang L (2010) TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J Phys Chem C 114:7806–7811CrossRefGoogle Scholar
  88. 88.
    Yu DH, Yu X, Wang C, Liu XC, Xing Y (2012) Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties. ACS Appl Mater Interfaces 4:2781–2788PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ahmadizadegan H (2017) Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane. J Colloid Interface Sci 491:390–400PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Foruzanmehr MR, Vuillaume PY, Robert M, Elkoun S (2015) The effect of grafting a nano-TiO2 thin film on physical and mechanical properties of cellulosic natural fibers. Mater Des 85:671–678CrossRefGoogle Scholar
  91. 91.
    Abdal-hay A, Makhlouf ASH, Khalil KA (2015) Novel, facile, single-step technique of polymer/TiO2 nanofiber composites membrane for photodegradation of methylene blue. ACS Appl Mater Interfaces 7(24):13329–13341CrossRefGoogle Scholar
  92. 92.
    Zhang X, Wang P, Han Q, Li H, Wang T, Ding M (2018) Metal–organic framework based in‐syringe solid‐phase extraction for the on‐site sampling of polycyclic aromatic hydrocarbons from environmental water samples. J Sep Sci 41.  https://doi.org/10.1002/jssc.201701383PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Adeniji AO, Okoh OO, Okoh AI (2017) Petroleum hydrocarbon profiles of water and sediment of Algoa Bay, Eastern Cape, South Africa. Int J Environ Res Public Health 14:1263PubMedCentralCrossRefGoogle Scholar
  94. 94.
    Martins AF, da Silva DS, Mejía ACC, Bravo JE (2018) Occurrence of polycyclic aromatic hydrocarbons in surface water and hospital wastewater. J Environ Sci Health A.  https://doi.org/10.1080/10934529.2017.1422955CrossRefGoogle Scholar
  95. 95.
    Bai H, Zhou J, Zhang H, Tang G (2017) Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase. Colloids Surf B 150:68–77PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Singh RK, Kumar S, Kumar S, Kumar A (2008) Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem Eng J 40:293CrossRefGoogle Scholar
  97. 97.
    Nuhoglu A, Yalcin B (2005) Modelling of phenol removal in a batch reactor. Proc Biochem 40:1233CrossRefGoogle Scholar
  98. 98.
    Salim NE, Jaafar J, Ismail AF, Othman MHD, Rahman MA, Yusof N, Qtaishat M, Matsuura T, Aziz F, Salleh WNW (2018) Preparation and characterization of hydrophilic surface modifier macromolecule modified poly (ether sulfone) photocatalytic membrane for phenol removal. Chem Eng J 335:236–247CrossRefGoogle Scholar
  99. 99.
    Moslehyani A, Ismail AF, Othman MHD, Matsuura T (2015) Hydrocarbon degradation and separation of bilge water via a novel TiO2-HNTs/PVDFbased photocatalytic membrane reactor (PMR). RSC Adv 5:14147–14155CrossRefGoogle Scholar
  100. 100.
    Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Regitano JB, Leal RMP (2010) Diversity and efficiency of bradyrhizobium strains isolated from soil samples collected from around sesbania virgata roots using cowpea as trap species. Rev Bras Cienc Solo 34:601CrossRefGoogle Scholar
  102. 102.
    Viseras J (1999) Plan de higiene rural. Dossier: problematica de los ´ envases de fitosanitarios. Phytoma Espana 111:12–16Google Scholar
  103. 103.
    Gao D, Liu N, Li W, Han Y (2018) Fabrication of nanoporous polymeric crystalline TiO2composite for photocatalytic degradation of aqueous organic pollutants under visible light irradiation. Appl Organomet Chem 32.  https://doi.org/10.1002/aoc.4119CrossRefGoogle Scholar
  104. 104.
    Wang H, Wang N, Wang B, Zhao Q, Fang H, Fu C, Tang C, Jiang F, Zhou Y, Chen Y, Jiang Q (2016) Antibiotics in drinking water in shanghai and their contribution to antibiotic exposure of school children. Environ Sci Technol 50(5):2692–2699PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Karaoliaa P, Michael-Kordatoua I, Hapeshia E, Drosouc C, Bertakis Y, Christofilosd D, Armatas GS, Sygellou L, Schwartz T, Xekoukoulotakis NP, Fatta-Kassinos D (2018) Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Appl Catal B 224:810–824CrossRefGoogle Scholar
  106. 106.
    Kong H, Song J, Jang J (2010) Photocatalytic antibacterial capabilities of TiO2—biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ Sci Technol 44(14):5672–5676PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Cabral JPS (2010) Water microbiology. Bacterial pathogens and water. Int J Environ Res Public Health 7(10):3657–3703PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP (2014) Contamination of water resources by pathogenic bacteria. AMB Express 4:51PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Fernández-Ibáñez P, Blanco J, Sichel C, Malato S (2005) Water disinfection by solar photocatalysis using compound parabolic collectors. Catal Today 101:345–352CrossRefGoogle Scholar
  110. 110.
    Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214CrossRefGoogle Scholar
  111. 111.
    Saito T, Iwase T, Horie J, Morioka T (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J Photochem Photobiol B Biol 14:369–379CrossRefGoogle Scholar
  112. 112.
    Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098PubMedPubMedCentralGoogle Scholar
  113. 113.
    Huang Z, Maness P-C, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A Chem 130:163–170CrossRefGoogle Scholar
  114. 114.
    Benabbou AK, Guillard C, Pigeot-Remy S, Cantau C, Pigot T, Lejeune P (2011) Water disinfection using photosensitizers supported on silica. J Photochem Photobiol A Chem 219:101–108CrossRefGoogle Scholar
  115. 115.
    Zan L, Fa W, Peng T, Gong ZK (2007) Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. J Photochem Photobiol B Biol 86:165–169CrossRefGoogle Scholar
  116. 116.
    Sichel C, de Cara M, Tello J, Blanco J, Fernández-Ibáñez P (2007) Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl Catal B Environ 74:152–160CrossRefGoogle Scholar
  117. 117.
    Sokmen M, Degerli S, Aslan A (2007) Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water. Exp Parasitol 119:44–48CrossRefGoogle Scholar
  118. 118.
    Szekeres GP, Németh Z, Schrantz K, Nemeth K, Schabikowski M, Traber J, Pronk W, Hernadi K, Graule T (2018) Copper-coated cellulose-based water filters for virus retention. ACS Omega 3(1):446–454PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lee M, Chen BY, Den W (2015) Chitosan as a natural polymer for heterogeneous catalysts support: a short review on its applications. Appl Sci 5:1272–1283CrossRefGoogle Scholar
  120. 120.
    Luo L, Yang LC, Xiao M, Bian L, Yuan B, Liu Y, Jiang F, Pan X (2015) A novel biotemplated synthesis of TiO2/wood charcoal composites for synergistic removal of bisphenol A by adsorption and photocatalytic degradation. Chem Eng J 262:1275–1283CrossRefGoogle Scholar
  121. 121.
    Ohtani N, Tonoi M (2014) Improved photoluminescence lifetime of organic emissive materials embedded in organic-inorganic hybrid thin films fabricated by sol-gel method using tetraethoxysilane. Mol Cryst Liq Cryst 599:132–138CrossRefGoogle Scholar
  122. 122.
    Yan SC, Lv SB, Li ZS, Zouabd ZC (2010) Organic-inorganic composite photocatalyst of g-C(3)N(4) and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491Google Scholar
  123. 123.
    Corma A, Navarro MT, Rey F, Ruiz VR, Sabater MJ (2010) Direct synthesis of a photoactive inorganic-organic mesostructured hybrid material and its application as a photocatalyst. Chem Phys Chem 10:1084–1089CrossRefGoogle Scholar
  124. 124.
    Foruzanmehr MR, Vuillaum PY, Elkoun S, Robert M (2016) Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater Des 106:295–304CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Polymer Science, Bhaskaracharya College of Applied SciencesUniversity of DelhiNew DelhiIndia

Personalised recommendations