Advertisement

Polymer and Polymer-Based Nanocomposite Adsorbents for Water Treatment

  • Bingcai PanEmail author
  • Xiaolin Zhang
  • Zhao Jiang
  • Zhixian Li
  • Quanxing Zhang
  • Jinlong Chen
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

In the past decades, polymer and polymer-based nanocomposite adsorbents have been emerging as promising materials for the removal of various pollutants from contaminated waters, in terms of strong mechanical strength, excellent hydraulics performance, high stability, and tunable surface chemistry. In general, the adsorption of target pollutant is highly dependent upon the physicochemical structure of adsorbent materials, such as skeleton chemistry, pore structure, surface functional groups as well as the encapsulated moieties. This chapter reviews the synthesis, structure, and adsorption mechanism of polymer and polymer-based nanocomposite adsorbents utilized for the removal of various organic and inorganic pollutants. Also, the application of these materials is particularly concerned.

References

  1. 1.
    Jang M, Chen W, Cannon FS (2008) Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environ Sci Technol 42(9):3369–3374PubMedCrossRefGoogle Scholar
  2. 2.
    Vaughan RL, Reed BE (2005) Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res 39(6):1005–1014PubMedCrossRefGoogle Scholar
  3. 3.
    Zhuang JM, Hobenshield E, Walsh T (2008) Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating. Environ Technol 29(4):401–411PubMedCrossRefGoogle Scholar
  4. 4.
    Guo XJ, Chen FH (2005) Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ Sci Technol 39(17):6808–6818PubMedCrossRefGoogle Scholar
  5. 5.
    Chen KL, Mylon SE, Elimelech M (2007) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23(11):5920–5928PubMedCrossRefGoogle Scholar
  6. 6.
    Zouboulis AI, Katsoyiannis IA (2002) Arsenic removal using iron oxide loaded alginate beads. Ind Eng Chem Res 41(24):6149–6155CrossRefGoogle Scholar
  7. 7.
    Jang M, Min S-H, Park JK, Tlachac EJ (2007) Hydrous ferric oxide incorporated diatomite for remediation of arsenic contaminated groundwater. Environ Sci Technol 41(9):3322–3328PubMedCrossRefGoogle Scholar
  8. 8.
    Jang M, Min SH, Kim TH, Park JK (2006) Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite. Environ Sci Technol 40(5):1636–1643PubMedCrossRefGoogle Scholar
  9. 9.
    Kalderis D, Koutoulakis D, Paraskeva P, Diamadopoulos E, Otal E, Olivares del Valle J, Fernandez-Pereira C (2008) Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem Eng J 144(1):42–50CrossRefGoogle Scholar
  10. 10.
    Qiu Y, Cheng H, Xu C, Sheng D (2008) Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res 42(3):567–574PubMedCrossRefGoogle Scholar
  11. 11.
    Yu Z, Peldszus S, Huck PM (2008) Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound—naproxen, carbamazepine and nonylphenol—on activated carbon. Water Res 42(12):2873–2882PubMedCrossRefGoogle Scholar
  12. 12.
    Karaca S, Gürses A, Açikyildiz M, Ejder M (2008) Adsorption of cationic dye from aqueous solutions by activated carbon. Microporous Mesoporous Mater 115(3):376–382CrossRefGoogle Scholar
  13. 13.
    Karanfil T, Dastgheib SA (2004) Trichloroethylene adsorption by fibrous and granular activated carbons: aqueous phase, gas phase, and water vapor adsorption studies. Environ Sci Technol 38(22):5834–5841PubMedCrossRefGoogle Scholar
  14. 14.
    Hernandez-Ramirez O, Holmes SM (2008) Novel and modified materials for wastewater treatment applications. J Mater Chem 18(24):2751–2761CrossRefGoogle Scholar
  15. 15.
    Memon SQ, Memon N, Solangi AR, Memon J-u-R (2008) Sawdust: a green and economical sorbent for thallium removal. Chem Eng J 140(1–3):235–240CrossRefGoogle Scholar
  16. 16.
    Ríos CA, Williams CD, Roberts CL (2008) Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. J Hazard Mater 156(1–3):23–35PubMedCrossRefGoogle Scholar
  17. 17.
    Tripathy SS, Raichur AM (2008) Abatement of fluoride from water using manganese dioxide-coated activated alumina. J Hazard Mater 153(3):1043–1051PubMedGoogle Scholar
  18. 18.
    Vilar VJP, Botelho CMS, Boaventura RAR (2008) Metal biosorption by algae Gelidium derived materials from binary solutions in a continuous stirred adsorber. Chem Eng J 141(1–3):42–50CrossRefGoogle Scholar
  19. 19.
    Pan B, Pan B, Zhang W, Lv L, Zhang Q, Zheng S (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151(1–3):19–29CrossRefGoogle Scholar
  20. 20.
    Pan BC, Zhang QX, Meng FW, Li XT, Zhang X, Zheng JZ, Zhang WM, Pan BJ, Chen JL (2005) Sorption enhancement of aromatic sulfonates onto an aminated hyper-cross-linked polymer. Environ Sci Technol 39(9):3308–3313 PubMedCrossRefGoogle Scholar
  21. 21.
    Sun Y, Chen J, Li A, Liu F, Zhang Q (2005) Adsorption of resorcinol and catechol from aqueous solution by aminated hypercrosslinked polymers. React Funct Polym 64(2):63–73CrossRefGoogle Scholar
  22. 22.
    Bratkowska D, Fontanals N, Borrull F, Cormack PA, Sherrington DC, Marce RM (2010) Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water. J Chromatogr A 1217(19):3238–3243PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia A, Ferreira L, Leitao A, Rodrigues A (1999) Binary adsorption of phenol and m-cresol mixtures onto a polymeric adsorbent. Adsorpt. J. Int. Adsorpt. Soc. 5(4):359–368CrossRefGoogle Scholar
  24. 24.
    He C, Huang K, Huang J (2010) Surface modification on a hyper-cross-linked polymeric adsorbent by multiple phenolic hydroxyl groups to be used as a specific adsorbent for adsorptive removal of p-nitroaniline from aqueous solution. J Colloid Interface Sci 342(2):462–466PubMedCrossRefGoogle Scholar
  25. 25.
    Bilgili MS (2006) Adsorption of 4-chlorophenol from aqueous solutions by XAD-4 resin: isotherm, kinetic, and thermodynamic analysis. J Hazard Mater 137(1):157–164PubMedCrossRefGoogle Scholar
  26. 26.
    Xu ZY, Zhang QX, Wu CL, Wang LS (1997) Adsorption of naphthalene derivatives on different macroporous polymeric adsorbents. Chemosphere 35(10):2269–2276CrossRefGoogle Scholar
  27. 27.
    Long C, Li A, Wu H, Liu F, Zhang Q (2008) Polanyi-based models for the adsorption of naphthalene from aqueous solutions onto nonpolar polymeric adsorbents. J Colloid Interface Sci 319(1):12–18PubMedCrossRefGoogle Scholar
  28. 28.
    Lee JW, Jun HJ, Kwak DH, Chung PG (2005) Adsorption of dichloromethane from water onto a hydrophobic polymer resin XAD-1600. Water Res 39(4):617–629PubMedCrossRefGoogle Scholar
  29. 29.
    Zheng K, Pan B, Zhang Q, Zhang W, Pan B, Han Y, Zhang Q, Wei D, Cu Z, Zhang Q (2007) Enhanced adsorption of p-nitroaniline from water by a carboxylated polymeric adsorbent. Sep Purif Technol 57(2):250–256CrossRefGoogle Scholar
  30. 30.
    Otero M, Zabkova M, Rodrigues AE (2005) Comparative study of the adsorption of phenol and salicylic acid from aqueous solution onto nonionic polymeric resins. Sep Purif Technol 45(2):86–95CrossRefGoogle Scholar
  31. 31.
    Yang WC, Shim WG, Lee JW, Moon H (2003) Adsorption and desorption dynamics of amino acids in a nonionic polymeric sorbent XAD-16 column. Korean J Chem Eng 20(5):922–929CrossRefGoogle Scholar
  32. 32.
    Deosarkar SP, Pangarkar VG (2004) Adsorptive separation and recovery of organics from PHBA and SA plant effluents. Sep Purif Technol 38(3):241–254CrossRefGoogle Scholar
  33. 33.
    Abburi K (2003) Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin. J Hazard Mater 105(1–3):143–156PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Musty PR, Nickless G (1974) Use of amberlite XAD-4 for extraction and recovery of chlorinated insecticides and polychlorinated biphenyls from water. J Chromatogr 89(2):185–190CrossRefGoogle Scholar
  35. 35.
    Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212(Suppl. C):317–331PubMedCrossRefGoogle Scholar
  36. 36.
    Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170(2–3):381–394CrossRefGoogle Scholar
  37. 37.
    Swallow KC, Hume DN, Morel FMM (1980) Sorption of copper and lead by hydrous ferric-oxide. Environ Sci Technol 14(11):1326–1331CrossRefGoogle Scholar
  38. 38.
    Kinniburgh DG, Jackson ML, Syers JK (1976) Adsorption of alkaline-earth, transition, and heavy-metal cations by hydrous oxide gels of iron and aluminum. Soil Sci Soc Am J 40(5):796–799CrossRefGoogle Scholar
  39. 39.
    Fan M, Boonfueng T, Xu Y, Axe L, Tyson TA (2005) Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. J Colloid Interface Sci 281(1):39–48PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Trivedi P, Axe L, Tyson TA (2001) XAS studies of Ni and Zn sorbed to hydrous manganese oxide. Environ Sci Technol 35(22):4515–4521PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Bargar JR, Brown GE, Parks GA (1997) Surface complexation of Pb(II) at oxide-water interfaces. 1. XAFS and bond-valence determination of mononuclear and polynuclear Pb(II) sorption products on aluminum oxides. Geochim Cosmochim Acta 61(13):2617–2637CrossRefGoogle Scholar
  42. 42.
    Jang J-H, Dempsey BA (2008) Coadsorption of arsenic (III) and arsenic (V) onto hydrous ferric oxide: effects on abiotic oxidation of arsenic (III), extraction efficiency, and model accuracy. Environ Sci Technol 42(8):2893–2898PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kawashima M, Tainaka Y, Hori T, Koyama M, Takamatsu T (1986) Phosphate adsorption onto hydrous manganese(IV) oxide in the presence of divalent-cations. Water Res 20(4):471–475CrossRefGoogle Scholar
  44. 44.
    Streat M, Sweetland LA (1998) Removal of pesticides from water using hypercrosslinked polymer phases. Process Saf Environ Prot 76(2):127–134CrossRefGoogle Scholar
  45. 45.
    Zhaoyi X, Quauxing Z, Changlong W, Liansheng W (1997) Adsorption of naphthalene derivatives on different macroporous polymeric adsorbents. Chemosphere 38(10):8Google Scholar
  46. 46.
    Yang WC, Shim WG, Moon JWLAH (2003) Adsorption and desorption dynamics of amino acids in a nonionic polymeric sorbent XAD-16 column. Korean J Chem Eng 20(5):8Google Scholar
  47. 47.
    Pan B, Du W, Zhang W, Zhang X, Zhang Q, Pan B, Lv L, Zhang Q, Chen J (2007) Improved adsorption of 4-nitrophenol onto a novel hyper-cross-linked polymer. Environ Sci Technol 41(14):5057–5062PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Pan B, Zhang W, Pan B, Qiu H, Zhang Q, Zhang Q, Zheng S (2008) Efficient removal of aromatic sulfonates from wastewater by a recyclable polymer: 2-naphthalene sulfonate as a representative pollutant. Environ Sci Technol 42(19):7411–7416PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Masque N, Galia M, Marce RM, Borrull F (1999) Influence of chemical modification of polymeric resin on retention of polar compounds in solid-phase extraction. Chromatographia 50(1–2):21–26CrossRefGoogle Scholar
  50. 50.
    Xu Z, Zhang Q, Fang HHP (2003) Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Crit Rev Environ Sci Technol 33(4):363–389CrossRefGoogle Scholar
  51. 51.
    Kunin R (1980) Porous polymers as adsorbents—a review of current practice. Anzber-lzi-lites, p 163Google Scholar
  52. 52.
    Dinu MV, Dragan ES (2008) Heavy metals adsorption on some iminodiacetate chelating resins as a function of the adsorption parameters. React Funct Polym 68(9):1346–1354CrossRefGoogle Scholar
  53. 53.
    Pan B, Zhang W, Zhang Q, Zheng S (2008) Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. J Hazard Mater 157(2–3):293–299PubMedCrossRefGoogle Scholar
  54. 54.
    Okay O (2000) Macroporous copolymer networks. Prog Polym Sci (Oxford) 25(6):711–779CrossRefGoogle Scholar
  55. 55.
    Simpson EJ, Abukhadra RK, Koros WJ, Schechter RS (1993) Sorption equilibrium isotherms for volatile organics in aqueous solution: comparison of head-space gas chromatography and on-line UV stirred cell results. Ind Eng Chem Res 32(10):2269–2276CrossRefGoogle Scholar
  56. 56.
    Long C, Li A, Gao G, Fei Z, Zhang Q, Chen J, Reclaiming technique by using resin to adsorb nitro chlorobenzene in wastewater from producing nitro chlorobenzene. CN1562789-A, CN1233570-CGoogle Scholar
  57. 57.
    Freitas PA, Iha K, Felinto MC, Suarez-Iha ME (2008) Adsorption of di-2-pyridyl ketone salicyloylhydrazone on amberlite XAD-2 and XAD-7 resins: characteristics and isotherms. J Colloid Interface Sci 323(1):1–5PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang W, Xu Z, Pan B, Hong C, Jia K, Jiang P, Zhang Q (2008) Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents. J Colloid Interface Sci 325(1):41–47PubMedCrossRefGoogle Scholar
  59. 59.
    Wang G, Dou BJ, Wang JH, Wang WQ, Hao ZP (2013) Adsorption properties of benzene and water vapor on hyper-cross-linked polymers. RSC Adv 3(43):20523–20531CrossRefGoogle Scholar
  60. 60.
    Zhang W, Xu Z, Zhang Q, Pan B, Du W, Chen J, Method for treating diethyl (o-) phthalate waste water and recovering diethyl (o-) phthalate from it. CN1935776-A, CN100453523-CGoogle Scholar
  61. 61.
    Davankov VA, Rogoshin SV, Tsyurupa MP (1974) Macronet isoporous gels through crosslinking of dissolved polystyrene. J Polym Sci Part C Polym Symp 47:95–101CrossRefGoogle Scholar
  62. 62.
    Oh CG, Ahn JH, Ihm SK (2003) Adsorptive removal of phenolic compounds by using hypercrosslinked polystyrenic beads with bimodal pore size distribution. React Funct Polym 57(2–3):103–111CrossRefGoogle Scholar
  63. 63.
    Li A, Zhang Q, Zhang G, Chen J, Fei Z, Liu F (2002) Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent. Chemosphere 47(9):981–989PubMedCrossRefGoogle Scholar
  64. 64.
    Nastaj J, Kamińska A (2008) Adsorption of phenol on water-fluidized polymeric amberlite XAD-4 and XAD-16 adsorbents. Przem Chem 87(3):300–306Google Scholar
  65. 65.
    Azanova VV, Hradil J (1999) Sorption properties of macroporous and hypercrosslinked copolymers. React Funct Polym 41(1):163–175CrossRefGoogle Scholar
  66. 66.
    Juang RS, Shiau JY (1999) Adsorption isotherms of phenols from water onto macroreticular resins. J Hazard Mater 70(3):171–183PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Gusler GM, Browne TE, Cohen Y (1993) Sorption of organics from aqueous solution onto polymeric resins. Ind Eng Chem Res 32(11):2727–2735CrossRefGoogle Scholar
  68. 68.
    Yang W, Li A, Fu C, Fan J, Zhang Q (2007) Adsorption mechanism of aromatic sulfonates onto resins with different matrices. Ind Eng Chem Res 46(21):6971–6977CrossRefGoogle Scholar
  69. 69.
    Saikia MD (2008) Revisiting adsorption of biomolecules on polymeric resins. Colloids Surf A 315(1–3):196–204CrossRefGoogle Scholar
  70. 70.
    Bohra PM, Vaze AS, Pangarkar VG, Taskar A (1994) Adsorptive recovery of water-soluble essential oil components. J Chem Technol Biotechnol 60(1):97–102CrossRefGoogle Scholar
  71. 71.
    Streat M, Sweetland LA (1997) Physical and adsorptive properties of hypersol-macronet™ polymers. React Funct Polym 35(1–2):99–109CrossRefGoogle Scholar
  72. 72.
    Davankov VA, Rogozhin SV, Tsyurupa MP (1969) Macronet polystyren strucutres for ionites and method of producing same. US Patent, 3729457Google Scholar
  73. 73.
    Davankov VA, Rogozhin SV, Tsyurupa MP (1973) Macronet polystyrene structures for ionites and method of producing same. In: Macronet polystyrene structures for ionites and method of producing sameGoogle Scholar
  74. 74.
    Zeng X, Fan Y, Wu G, Wang C, Shi R (2009) Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent. J Hazard Mater 169(1–3):1022–1028PubMedCrossRefGoogle Scholar
  75. 75.
    Bai LL, Zhou YH, Wang XL, Yuan SG, Wu XL (2011) Facile synthesis of hypercrosslinked resin via photochlorination of p-xylene and succedent alkylation polymerization. Chin Chem Lett 22(9):1115–1118CrossRefGoogle Scholar
  76. 76.
    Xiaohui Z, Siguo Y (2011) Adsorption of benzene from air, solution and film floating on the water by non-polystyrenr hypercrosslinked resin. Ion Exch Adsorpt 27(4):297–303Google Scholar
  77. 77.
    Jafvert CT, Westall JC, Grieder E, Schwarzenbach RP (1990) Distribution of hydrophobic ionogenic organic compounds between octanol and water: organic acids. Environ Sci Technol 24(12):1795–1803CrossRefGoogle Scholar
  78. 78.
    Stapleton MG, Sparks DL, Dentel SK (1994) Sorption of pentachlorophenol to HDTMA-clay as a function of ionic strength and pH. Environ Sci Technol 28(13):2330–2335PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang WM, Pan BC, Xu ZW, Hong CH, Zhang QJ, Zhang B, Li AM, Pan BG, Zhang QX, Chen JL (2007) Method of increasing hydrophilicity of complex function adsorption resin and reinforcing adsorbability of the complex function adsorption resin. Chinese Patent, CN 20071001997.3Google Scholar
  80. 80.
    Xiao G, Fu L, Li A (2012) Enhanced adsorption of bisphenol A from water by acetylaniline modified hyper-cross-linked polymeric adsorbent: effect of the cross-linked bridge. Chem Eng J 191:171–176CrossRefGoogle Scholar
  81. 81.
    Pan BC, Xiong Y, Li AM, Chen JL, Zhang QX, Jin XY (2002) Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer. React Funct Polym 53(2–3):63–72CrossRefGoogle Scholar
  82. 82.
    Wang RF, Shi ZQ, Shi RF, Zhang JZ, Ou LL (2005) The study of adsorption of phenol and aniline on aminated-macroporous hypercrosslinked resins. Acta Polym Sin 3:339–344Google Scholar
  83. 83.
    Chang C-F, Chang C-Y, Hsu K-E, Lee S-C, Hoell W (2008) Adsorptive removal of the pesticide methomyl using hypercrosslinked polymers. J Hazard Mater 155(1–2):295–304PubMedCrossRefGoogle Scholar
  84. 84.
    Yu Y, Zhuang YY, Wang ZH (2001) Adsorption of water-soluble dye onto functionalized resin. J Colloid Interface Sci 242(2):288–293CrossRefGoogle Scholar
  85. 85.
    Li AM, Cai JG, Zhang HY, Ge JJ, Li ZB, Long C, Liu FQ, Zhang QX (2005) Chinese patent: CN 1712365AGoogle Scholar
  86. 86.
    Chen JL, Pan BC, Xiong Y, Li AM, Long C, Han YZ, Sun Y, Zhang QX (2002) Chinese patent: CN1384069Google Scholar
  87. 87.
    Lee YS, Ryoo SJ (2002) US patent: US6369169Google Scholar
  88. 88.
    Zhu XX, Brizard F, Piche J, Yim CT, Brown GR (2000) Bile salt anion sorption by polymeric resins: comparison of a functionalized polyacrylamide resin with cholestyramine. J Colloid Interface Sci 232(2):282–288PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang Q, Li A, Liu F (2004) Synthesizing weakly alkaline anionic exchange resin with double functions and superhigh cross-linking. CN1346708-A, CN1131112-CGoogle Scholar
  90. 90.
    Pan B, Zhang Q, Pan B, Zhang W, Du W, Ren H (2008) Removal of aromatic sulfonates from aqueous media by aminated polymeric sorbents: concentration-dependent selectivity and the application. Microporous Mesoporous Mater 116(1–3):63–69CrossRefGoogle Scholar
  91. 91.
    Chen J, Pan B, Xiong Y, Method of treating naphthalene-blowing effluence and recovering resource in 2-naphthol producing process. CN1384069-A, CN1139539-CGoogle Scholar
  92. 92.
    Zhang Q, Long C, Xu Z, Long CXZ, Treatment and rediaimation of waste water in production of 4,4′-dinitrobistyrene-2,2′-bisulfonic acid. CN1304882-A, CN1156407-CGoogle Scholar
  93. 93.
    Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331PubMedCrossRefGoogle Scholar
  94. 94.
    Jiang Y, Hua M, Wu B, Ma H, Pan B, Zhang Q (2014) Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. Environ Sci Pollut Res 21(10):6729–6735CrossRefGoogle Scholar
  95. 95.
    Pan B, Xu J, Wu B, Li Z, Liu X (2013) Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ Sci Technol 47(16):9347–9354PubMedCrossRefGoogle Scholar
  96. 96.
    Jiang Z, Zhang S, Pan B, Wang W, Wang X, Lv L, Zhang W, Zhang Q (2012) A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction. J Hazard Mater 233:1–6PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang Q, Du Q, Jiao T, Pan B, Zhang Z, Sun Q, Wang S, Wang T, Gao F (2013) Selective removal of phosphate in waters using a novel of cation adsorbent: Zirconium phosphate (ZrP) behavior and mechanism. Chem Eng J 221:315–321CrossRefGoogle Scholar
  98. 98.
    Xie Y, Lv L, Zhang S, Pan B, Wang X, Chen Q, Zhang W, Zhang Q (2011) Fabrication of anion exchanger resin/nano-CdS composite photocatalyst for visible light RhB degradation. Nanotechnology 22(30):305707PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang Y, Pan B, Shan C, Gao X (2016) Enhanced phosphate removal by nanosized hydrated La(III) oxide confined in cross-linked polystyrene networks. Environ Sci Technol 50(3):1447–1454PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang X, Zhang L, Li Z, Jiang Z, Zheng Q, Lin B, Pan B (2017) Rational design of antifouling polymeric nanocomposite for sustainable fluoride removal from NOM-rich water. Environ Sci Technol 51(22):13363–13371PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang X, Wu M, Dong H, Li H, Pan B (2017) Simultaneous oxidation and sequestration of As(III) from water by using redox polymer-based Fe(III) oxide nanocomposite. Environ Sci Technol 51(11):6326–6334PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang Q, Li A, Pan B (2015) The development of ion exchange and adsorption resin and its application in industrial wastewater treatment and resource reuse. Polym Bull 9:21–43Google Scholar
  103. 103.
    Goto M, Goto S (1987) Removal and recovery of heavy-metals by ion-exchange fiber. J Chem Eng Jpn 20(5):467–472CrossRefGoogle Scholar
  104. 104.
    Egen N, Ford PC, Grotz LC (1976) Hard water, water softening, ion-exchange. J Chem Educ 53(5):302–303CrossRefGoogle Scholar
  105. 105.
    Zhang QR, Du W, Pan BC, Pan BJ, Zhang WM, Zhang QJ, Xu ZW, Zhang QX (2008) A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger. J Hazard Mater 152(2):469–475PubMedCrossRefGoogle Scholar
  106. 106.
    Nastasović A, Jovanović S, Đorđević D, Onjia A, Jakovljević D, Novaković T (2004) Metal sorption on macroporous poly(GMA-co-EGDMA) modified with ethylene diamine. React Funct Polym 58(2):139–147CrossRefGoogle Scholar
  107. 107.
    Hosseini MS, Raissi H, Madarshahian S (2006) Synthesis and application of a new chelating resin functionalized with 2,3-dihydroxy benzoic acid for Fe(III) determination in water samples by flame atomic absorption spectrometry. React Funct Polym 66(12):1539–1545CrossRefGoogle Scholar
  108. 108.
    Alberti G, Pesavento M, Biesuz R (2007) A chelating resin as a probe for the copper(II) distribution in grape wines. React Funct Polym 67(10):1083–1093CrossRefGoogle Scholar
  109. 109.
    Chen C, Chiang C (2007) Removal of heavy metal ions by a chelating resin containing glycine as chelating groups. Sep Purif Technol 54(3):396–403CrossRefGoogle Scholar
  110. 110.
    Meesri S, Praphairaksit N, Imyim A (2007) Extraction and preconcentration of toxic metal ions from aqueous solution using benzothiazole-based chelating resins. Microchem J 87(1):47–55CrossRefGoogle Scholar
  111. 111.
    Pramanik S, Dey S, Chattopadhyay P (2007) A new chelating resin containing azophenolcarboxylate functionality: synthesis, characterization and application to chromium speciation in wastewater. Anal Chim Acta 584(2):469–476PubMedCrossRefGoogle Scholar
  112. 112.
    Atia AA, Donia AM, Yousif AM (2008) Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Sep Purif Technol 61(3):348–357CrossRefGoogle Scholar
  113. 113.
    Chen CY, Lin MS, Hsu KR (2008) Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups. J Hazard Mater 152(3):986–993PubMedCrossRefGoogle Scholar
  114. 114.
    Saygi KO, Tuzen M, Soylak M, Elci L (2008) Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. J Hazard Mater 153(3):1009–1014PubMedCrossRefGoogle Scholar
  115. 115.
    Burke WA, Removal of heavy metal cation contaminants from organic soln.-using chelating ion exchange resin modified by removal of sodium ions. US5525315-AGoogle Scholar
  116. 116.
    Schneider HP, Wallbaum U (1990) Gel-type chelating resins and a process for removal of multi-valent, alkaline earth or heavy metal cations from solutions 4895905Google Scholar
  117. 117.
    Denizli A, Sanli N, Garipcan B, Patir S, Alsancak G (2004) Methacryloylamidoglutamic acid incorporated porous poly(methyl methacrylate) beads for heavy-metal removal. Ind Eng Chem Res 43(19):6095–6101CrossRefGoogle Scholar
  118. 118.
    Leinonen H, Lehto J (2000) Ion-exchange of nickel by iminodiacetic acid chelating resin Chelex 100. React Funct Polym 43(1–2):1–6CrossRefGoogle Scholar
  119. 119.
    Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106PubMedCrossRefGoogle Scholar
  120. 120.
    Memon SQ, Bhanger MI, Hasany SM, Khuhawar MY (2007) The efficacy of nitrosonaphthol functionalized XAD-16 resin for the preconcentration/sorption of Ni(II) and Cu(II) ions. Talanta 72(5):1738–1745PubMedCrossRefGoogle Scholar
  121. 121.
    Dutta S, Das AK (2007) Synthesis, characterization, and application of a new chelating resin functionalized with dithiooxamide. J Appl Polym Sci 103(4):2281–2285CrossRefGoogle Scholar
  122. 122.
    Kaur H, Agrawal YK (2005) Functionalization of XAD-4 resin for the separation of lanthanides using chelation ion exchange liquid chromatography. React Funct Polym 65(3):277–283CrossRefGoogle Scholar
  123. 123.
    Dogutan M, Filik H, Apak R (2003) Preconcentration of manganese(II) from natural and sea water on a palmitoyl quinolin-8-ol functionalized XAD copolymer resin and spectrophotometric determination with the formaldoxime reagent. Anal Chim Acta 485(2):205–212CrossRefGoogle Scholar
  124. 124.
    Mondal BC, Das AK (2003) Determination of mercury species with a resin functionalized with a 1,2-bis(o-aminophenylthio)ethane moiety. Anal Chim Acta 477(1):73–80CrossRefGoogle Scholar
  125. 125.
    Bernard J, Branger C, Nguyen TLA, Denoyel R, Margaillan A (2008) Synthesis and characterization of a polystyrenic resin functionalized by catechol: application to retention of metal ions. React Funct Polym 68(9):1362–1370CrossRefGoogle Scholar
  126. 126.
    Rivas BL, Pooley SA, Maturana HA, Villegas S (2001) Sorption properties of poly(styrene-co-divinylbenzene) amine functionalized weak resin. J Appl Polym Sci 80(12):2123–2127CrossRefGoogle Scholar
  127. 127.
    Dev K, Pathak R, Rao GN (1999) Sorption behaviour of lanthanum(III), neodymium(III), terbium(III), thorium(IV) and uranium(VI) on Amberlite XAD-4 resin functionalized with bicine ligands. Talanta 48(3):579–584PubMedCrossRefGoogle Scholar
  128. 128.
    Pan BC, Zhang QR, Zhang WM, Pan BJ, Du W, Lv L, Zhang QJ, Xu ZW, Zhang QX (2007) Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion. J Colloid Interface Sci 310(1):99–105PubMedCrossRefGoogle Scholar
  129. 129.
    Pan B, Zhang Q, Du W, Zhang W, Xu Z (2007) Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism. Water Res 41(14):3103–3111PubMedCrossRefGoogle Scholar
  130. 130.
    Jia K, Pan B, Zhang Q, Zhang W, Jiang P, Hong C (2008) Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate. J Colloid Interface Sci 318(2):160–166PubMedCrossRefGoogle Scholar
  131. 131.
    Cumbal L, Sengupta AK (2005) Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of Donnan membrane effect. Environ Sci Technol 39(17):6508–6515PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Blaney LM, Cinar S, SenGupta AK (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41(7):1603–1613PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Zhang Q, Pan B, Chen X, Zhang W, Lv L, Zhao XS (2008) Preparation of polymer-supported hydrated ferric oxide based on Donnan membrane effect and its application for arsenic removal. Sci China Ser B Chem 51(4):379–385CrossRefGoogle Scholar
  134. 134.
    Zhang Q, Pan B, Zhang W, Jia K (2008) Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2. Environ Sci Technol 42(11):4140–4145PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Pan BC, Su Q, Zhang WM, Zhang QX, Ren HQ, Zhang QJ, Zhang QR, Pan BJ (2007) Enviromental functional material based on nanoparticles hydrated manganese oxide and preparing method thereof. Chinese Patent, CN20071013405.0Google Scholar
  136. 136.
    Sylvester P, Westerhoff P, Moller T, Badruzzaman M, Boyd O (2007) A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environ Eng Sci 24(1):104–112CrossRefGoogle Scholar
  137. 137.
    DeMarco MJ, Sengupta AK, Greenleaf JE (2003) Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res 37(1):164–176PubMedCrossRefGoogle Scholar
  138. 138.
    Moller T, Sylvester P (2008) Effect of sililca and pH on arsenic uptake by resin/iron oxide hybrid media. Water Res 42(6–7):1760–1766PubMedCrossRefGoogle Scholar
  139. 139.
    Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36(20):5141–5155PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Pan B, Li Z, Zhang Y, Xu J, Chen L, Dong H, Zhang W (2014) Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chem Eng J 248:290–296CrossRefGoogle Scholar
  141. 141.
    Du Q, Zhang S, Pan B, Lv L, Zhang W, Zhang Q (2014) Effect of spatial distribution and aging of ZVI on the reactivity of resin-ZVI composites for arsenite removal. J Mater Sci 49(20):7073–7079CrossRefGoogle Scholar
  142. 142.
    Pan B, Han F, Nie G, Wu B, He K, Lu L (2014) New strategy to enhance phosphate removal from water by hydrous manganese oxide. Environ Sci Technol 48(9):5101–5107PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bingcai Pan
    • 1
    • 2
    Email author
  • Xiaolin Zhang
    • 1
    • 2
  • Zhao Jiang
    • 1
  • Zhixian Li
    • 1
  • Quanxing Zhang
    • 1
    • 2
  • Jinlong Chen
    • 1
  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingChina
  2. 2.Research Center for Environmental Nanotechnology (ReCENT)Nanjing UniversityNanjingChina

Personalised recommendations