Polymer’s Characterization and Properties

  • Olumide Bolarinwa AyodeleEmail author
  • Peter Adeniyi Alaba
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


This chapter discussed the characterization and properties of polymeric materials. Prominent characterization techniques used for analyzing polymeric materials are mass spectrometry (MS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC), which are used for measuring mass-to-charge ratio (m/z) of analyte ions. Other methods used for this purpose include matrix-assisted laser desorption/ionization (MALDI), electrospray ionization (ESI), and secondary-ion mass spectrometry (SIMS). X-ray diffraction (XRD) is used for solid-state analysis such as degree of crystallinity and crystal structure as well as the unit cell parameters, while Fourier transform infrared spectroscopy (FTIR) is used for identification of the polymer functional groups. NMR helps to identify and characterize various polymers and also provides information on the mobility of their molecules, while X-ray photoelectron spectroscopy (XPS) provides information regarding the chemical composition of polymeric materials. The physical properties such as hydrophobicity, functional groups, and flexibility of the polymer chain structure and chemical properties such as chemical reactivity, toxicity, biocompatibility, chirality, adsorption capacities, chelation, and polyfunctionality of polymeric materials are also discussed.


Polymers Characterization methods Physical properties Chemical properties 

References and Future Readings

  1. 1.
    Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1):219–243CrossRefGoogle Scholar
  2. 2.
    Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479CrossRefGoogle Scholar
  3. 3.
    Chen M-L, Min J-Q, Pan S-D, Jin M-C (2014) Surface core–shell magnetic polymer modified graphene oxide-based material for 2, 4, 6-trichlorophenol removal. RSC Adv 4(108):63494–63501CrossRefGoogle Scholar
  4. 4.
    Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70CrossRefGoogle Scholar
  5. 5.
    Crini G, Cosentino C, Bertini S, Naggi A, Torri G, Vecchi C, Janus L, Morcellet M (1998) Solid state NMR spectroscopy study of molecular motion in cyclomaltoheptaose (β-cyclodextrin) crosslinked with epichlorohydrin. Carbohydr Res 308(1):37–45CrossRefGoogle Scholar
  6. 6.
    Crini G, Martel B, Torri G (2008) Adsorption of CI Basic Blue 9 on chitosan-based materials. Int J Environ Pollut 34(1–4):451–465CrossRefGoogle Scholar
  7. 7.
    Crini G, Morcellet M (2002) Synthesis and applications of adsorbents containing cyclodextrins. J Sep Sci 25(13):789–813CrossRefGoogle Scholar
  8. 8.
    Delval F, Crini G, Bertini S, Filiatre C, Torri G (2005) Preparation, characterization and sorption properties of crosslinked starch-based exchangers. Carbohydr Polym 60(1):67–75CrossRefGoogle Scholar
  9. 9.
    Delval F, Crini G, Morin N, Vebrel J, Bertini S, Torri G (2002) The sorption of several types of dye on crosslinked polysaccharides derivatives. Dyes Pigm 53(1):79–92CrossRefGoogle Scholar
  10. 10.
    Euvrard É, Morin-Crini N, Druart C, Bugnet J, Martel B, Cosentino C, Moutarlier V, Crini G (2016) Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein J Org Chem 12(1):1826–1838CrossRefGoogle Scholar
  11. 11.
    Fei X, Murray KK (1996) On-line coupling of gel permeation chromatography with MALDI mass spectrometry. Anal Chem 68(20):3555–3560CrossRefGoogle Scholar
  12. 12.
    Güven O, Şen M, Karadağ E, Saraydın D (1999) A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes. Radiat Phys Chem 56(4):381–386CrossRefGoogle Scholar
  13. 13.
    Hanton S (2001) Mass spectrometry of polymers and polymer surfaces. Chem Rev 101(2):527–570CrossRefGoogle Scholar
  14. 14.
    Hanton SD, Liu XM (2000) GPC separation of polymer samples for MALDI analysis. Anal Chem 72(19):4550–4554CrossRefGoogle Scholar
  15. 15.
    Hewitt LM, Marvin CH (2005) Analytical methods in environmental effects-directed investigations of effluents. Mutat Res/Rev Mutat Res 589(3):208–232CrossRefGoogle Scholar
  16. 16.
    Hill SE, Feller D, Glendening ED (1998) Theoretical study of cation/ether complexes: alkali metal cations with 1, 2-dimethoxyethane and 12-crown-4. J Phys Chem A 102(21):3813–3819CrossRefGoogle Scholar
  17. 17.
    Håkansson K, Zubarev RA, Håkansson P, Laiko V, Dodonov AF (2000) Design and performance of an electrospray ionization time-of-flight mass spectrometer. Rev Sci Instrum 71(1):36–41CrossRefGoogle Scholar
  18. 18.
    Johnson BR, Bartle KD, Domin M, Herod AA, Kandiyoti R (1998) Absolute calibration of size exclusion chromatography for coal derivatives through MALDI-ms. Fuel 77(9–10):933–945CrossRefGoogle Scholar
  19. 19.
    Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349CrossRefGoogle Scholar
  20. 20.
    Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  21. 21.
    Lavertu M, Xia Z, Serreqi A, Berrada M, Rodrigues A, Wang D, Buschmann M, Gupta A (2003) A validated 1 H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal 32(6):1149–1158CrossRefGoogle Scholar
  22. 22.
    Li J, Du Y, Yang J, Feng T, Li A, Chen P (2005) Preparation and characterisation of low molecular weight chitosan and chito-oligomers by a commercial enzyme. Polym Degrad Stab 87(3):441–448CrossRefGoogle Scholar
  23. 23.
    Lin H, Wang H, Xue C, Ye M (2002) Preparation of chitosan oligomers by immobilized papain. Enzyme Microb Tech 31(5):588–592CrossRefGoogle Scholar
  24. 24.
    Marrakchi F, Khanday W, Asif M, Hameed B (2016) Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int J Biol Macromol 93:1231–1239CrossRefGoogle Scholar
  25. 25.
    Martel B, Devassine M, Crini G, Weltrowski M, Bourdonneau M, Morcellet M (2001) Preparation and sorption properties of a β-cyclodextrin-linked chitosan derivative. J Polym Sci Part A Polym Chem 39(1):169–176CrossRefGoogle Scholar
  26. 26.
    Mines PD, Thirion D, Uthuppu B, Hwang Y, Jakobsen MH, Andersen HR, Yavuz CT (2017) Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up. Chem Eng J 309:766–771CrossRefGoogle Scholar
  27. 27.
    Montaudo MS, Montaudo G (1999) Bivariate distribution in PMMA/PBA copolymers by combined SEC/NMR and SEC/MALDI measurements. Macromolecules 32(21):7015–7022CrossRefGoogle Scholar
  28. 28.
    Montaudo G, Montaudo MS, Puglisi C, Samperi F (1995) Molecular weight distribution of poly (dimethylsiloxane) by combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with gel-permeation chromatography fractionation. Rapid Commun Mass Spectrom 9(12):1158–1163CrossRefGoogle Scholar
  29. 29.
    Montaudo MS, Puglisi C, Samperi F, Montaudo G (1998) Application of size exclusion chromatography matrix-assisted laser desorption/ionization time-of-flight to the determination of molecular masses in polydisperse polymers. Rapid Commun Mass Spectrom 12(9):519–528CrossRefGoogle Scholar
  30. 30.
    Montaudo MS, Puglisi C, Samperi F, Montaudo G (1998) Molar mass distributions and hydrodynamic interactions in random copolyesters investigated by size exclusion chromatography/matrix-assisted laser desorption ionization. Macromolecules 31(12):3839–3845CrossRefGoogle Scholar
  31. 31.
    Murthy NS (2004) Recent developments in polymer characterization using x-ray diffraction. Parameters 18:19Google Scholar
  32. 32.
    Nielen MW (1998) Polymer analysis by micro-scale size-exclusion chromatography/MALDI time-of-flight mass spectrometry with a robotic interface. Anal Chem 70(8):1563–1568CrossRefGoogle Scholar
  33. 33.
    Nielen MW, Malucha S (1997) Characterization of polydisperse synthetic polymers by size-exclusion chromatography/matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 11(11):1194–1204CrossRefGoogle Scholar
  34. 34.
    Pan S-D, Chen X-H, Li X-P, Cai M-Q, Shen H-Y, Zhao Y-G, Jin M-C (2015) Double-sided magnetic molecularly imprinted polymer modified graphene oxide for highly efficient enrichment and fast detection of trace-level microcystins from large-volume water samples combined with liquid chromatography–tandem mass spectrometry. J Chromatogr A 1422:1–12CrossRefGoogle Scholar
  35. 35.
    Pan S-D, Shen H-Y, Zhou L-X, Chen X-H, Zhao Y-G, Cai M-Q, Jin M-C (2014) Controlled synthesis of pentachlorophenol-imprinted polymers on the surface of magnetic graphene oxide for highly selective adsorption. J Mater Chem A 2(37):15345–15356CrossRefGoogle Scholar
  36. 36.
    Pan S-D, Zhou L-X, Zhao Y-G, Chen X-H, Shen H-Y, Cai M-Q, Jin M-C (2014) Amine-functional magnetic polymer modified graphene oxide as magnetic solid-phase extraction materials combined with liquid chromatography–tandem mass spectrometry for chlorophenols analysis in environmental water. J Chromatogr A 1362:34–42CrossRefGoogle Scholar
  37. 37.
    Radi S, Ramdani A, Lekchiri Y, Morcellet M, Crini G, Janus L, Martel B (2000) Extraction of metal ions from water with tetrapyrazolic macrocycles bound to Merrifield resin and silica gel. J Appl Polym Sci 78(14):2495–2499CrossRefGoogle Scholar
  38. 38.
    Shahidi F, Arachchi JKV, Jeon Y-J (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10(2):37–51CrossRefGoogle Scholar
  39. 39.
    Shen H, Pan S, Zhang Y, Huang X, Gong H (2012) A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu(II), Cr(VI) co-existing water system. Chem Eng J 183:180–191CrossRefGoogle Scholar
  40. 40.
    Shiftan D, Ravenelle F, Mateescu MA, Marchessault RH (2000) Change in the V/B polymorph ratio and T1 relaxation of epichlorohydrin crosslinked high amylose starch excipient. Starch-Stärke 52(6–7):186–195CrossRefGoogle Scholar
  41. 41.
    Sutjianto A, Curtiss LA (1998) Li+–diglyme complexes: barriers to lithium cation migration. J Phys Chem A 102(6):968–974CrossRefGoogle Scholar
  42. 42.
    Synowiecki J, Ali Al-Khateeb N (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nut 43(2):145–171CrossRefGoogle Scholar
  43. 43.
    Varma A, Deshpande S, Kennedy J (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55(1):77–93CrossRefGoogle Scholar
  44. 44.
    De Vasconcelos C, Bezerril P, Dantas T, Pereira M, Fonseca J (2007) Adsorption of bovine serum albumin on template-polymerized chitosan/poly (methacrylic acid) complexes. Langmuir 23(14):7687–7694CrossRefGoogle Scholar
  45. 45.
    Wang J-P, Chen Y-Z, Yuan S-J, Sheng G-P, Yu H-Q (2009) Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Res 43(20):5267–5275CrossRefGoogle Scholar
  46. 46.
    Wang J, Deng B, Wang X, Zheng J (2009) Adsorption of aqueous Hg (II) by sulfur-impregnated activated carbon. Environ Eng Sci 26(12):1693–1699CrossRefGoogle Scholar
  47. 47.
    Xu W, Wang Y, Shen S, Li Y, Xia S, Zhang Y (1989) Studies on the polymerization of β-cyclodextrin with pichlorohydrin. Chin J Polym Sci 1:16–22Google Scholar
  48. 48.
    Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R, Duan H, Chen Y (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21(10):3448–3454CrossRefGoogle Scholar
  49. 49.
    Yun H, Olesik SV, Marti EH (1999) Polymer characterization using packed capillary size exclusion and critical adsorption chromatography combined with MALDI-TOF mass spectrometry. J Microcolumn Sep 11(1):53–61CrossRefGoogle Scholar
  50. 50.
    Zhao Y-G, Chen X-H, Pan S-D, Zhu H, Shen H-Y, Jin M-C (2013) Self-assembly of a surface bisphenol A-imprinted core–shell nanoring amino-functionalized superparamagnetic polymer. J Mater Chem A 1(38):11648–11658CrossRefGoogle Scholar
  51. 51.
    Zhao Y-G, Shen H-Y, Pan S-D, Hu M-Q (2010) Synthesis, characterization and properties of ethylenediamine-functionalized Fe3O4 magnetic polymers for removal of Cr (VI) in wastewater. J Hazard Mater 182(1):295–302CrossRefGoogle Scholar
  52. 52.
    Zhao Y-G, Shen H-Y, Pan S-D, Hu M-Q, Xia Q-H (2010) Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium (VI) ions. J Mater Sci 45(19):5291–5301CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Olumide Bolarinwa Ayodele
    • 1
    Email author
  • Peter Adeniyi Alaba
    • 2
  1. 1.International Iberian Nanotechnology LaboratoryMicro- and Nanofabrication DepartmentBragaPortugal
  2. 2.Department of Chemical EngineeringCovenant UniversitySango-otaNigeria

Personalised recommendations