Advertisement

Mechanisms of Polymer Polymerization

  • Dmitry F. GrishinEmail author
  • Ivan D. Grishin
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

This chapter is devoted to the observation of general methods of polymer synthesis including radical, ionic, coordination, and metathesis polymerization. The main advantages, possibilities, and drawbacks of each method are discussed. A special emphasis was placed to the modern methods of controlled polymer synthesis leading to well-defined polymers with desired structure, composition and properties. Such methods are considered as a way to the novel polymer materials for various high-tech applications.

Keywords

Polymerization methods Modern techniques Controlled synthesis 

References and Further Readings

  1. 1.
    Schluter DA, Hawker C, Sakamoto J (eds) (2012) Synthesis of polymers: new structures and methods. Wiley-VCH Verlag & Co., WeinheimGoogle Scholar
  2. 2.
    Moad G, Solomon DH (2006) The chemistry of radical polymerization, 2nd edn. Elsevier Science Inc., New YorkGoogle Scholar
  3. 3.
    Brandrup J, Immergut EH, Grulke EA (eds) (1999) Polymer handbook, 4th edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Grishin DF (1993) Coordination-radical (co)polymerisation of vinyl monomers in the presence of organic compounds of Group III-V elements. Russ Chem Rev 10:951–962.  https://doi.org/10.1070/RC1993v062n10ABEH000056CrossRefGoogle Scholar
  5. 5.
    Matyjaszewski K (1998) Overview: fundamentals of controlled/living radical polymerization. In: Matyjaszewski K (ed) Controlled radical polymerization. ACS Symposium Series. vol 685. American Chemical Society, Washington, DC, p 2Google Scholar
  6. 6.
    Odian G (2004) Principles of polymerization, 4th edn. Wiley, HobokenCrossRefGoogle Scholar
  7. 7.
    Trommsdorff E, Kohle H, Lagally P (1948) Zur polymerisation des methacrylsäuremethylesters. Makromol Chem 1(3):169–198.  https://doi.org/10.1002/macp.1948.020010301CrossRefGoogle Scholar
  8. 8.
    Norrish RGW, Smith RR (1942) Catalysed polymerization of methyl methacrylate in the liquid phase. Nature 150:336–337CrossRefGoogle Scholar
  9. 9.
    Russell GT (1994) On exact and approximate methods of calculating an overall termination rate coefficient from chain length dependent termination rate coefficients. Macromol Theor Simul 3:439–468.  https://doi.org/10.1002/mats.1994.040030213CrossRefGoogle Scholar
  10. 10.
    Wang X, Ruckenstein EJ (1993) CO2 reforming of CH4 over Co/MgO solid solution catalysts—effect of calcination temperature and Co loading. Appl Polym Sci 49:2179–2188CrossRefGoogle Scholar
  11. 11.
    Grishin DF, Grishin ID (2015) Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile. Russ Chem Rev 84:712–736.  https://doi.org/10.1070/RCR4476CrossRefGoogle Scholar
  12. 12.
    Braun D, Cherdron H, Rehahn M, Ritter H, Voit B (2013) Polymer synthesis: theory and practice fundamentals, methods, experiments, 5th edn. Springer, HeidelbergCrossRefGoogle Scholar
  13. 13.
    Szwarc M (1956) «Living» polymers. Nature 176:1168CrossRefGoogle Scholar
  14. 14.
    Matyjaszewski K, Spanswick J (2005) Controlled/living radical polymerization. Mater Today 8(3):26–33.  https://doi.org/10.1016/S1369-7021(05),00745-5CrossRefGoogle Scholar
  15. 15.
    Matyjaszewski K, Tsarevsky NV (2014) Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc 136:6513–6533.  https://doi.org/10.1021/ja408069vCrossRefPubMedGoogle Scholar
  16. 16.
    Destarac M (2010) Controlled radical polymerization: industrial stakes, obstacles and achievements. Macromol React Eng 4:165–179.  https://doi.org/10.1002/mren.200900087CrossRefGoogle Scholar
  17. 17.
    Grishin ID, Grishin DF (2011) Controlled radical polymerization: prospect for application and industrial synthesis of polymers. Russ J Appl Chem 84(12):2021–2033CrossRefGoogle Scholar
  18. 18.
    Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4428.  https://doi.org/10.1021/ma3001719CrossRefGoogle Scholar
  19. 19.
    Moad G, Thang ESH (2013) Chem Asian J 8:1634CrossRefGoogle Scholar
  20. 20.
    Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog Polymer Sci 38:63–235.  https://doi.org/10.1016/j.progpolymsci.2012.06.002CrossRefGoogle Scholar
  21. 21.
    Hawker CJ, Bosman AW, Harth E (2001) New Polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688.  https://doi.org/10.1021/cr990119uCrossRefPubMedGoogle Scholar
  22. 22.
    Kolyakina EV, Grishin DF (2009) Nitroxide radicals formed in situas polymer chain growth regulators. Russ Chem Rev 78:535–568.  https://doi.org/10.1070/RC2009v078n06ABEH004026CrossRefGoogle Scholar
  23. 23.
    Poli R (2006) Relationship between one-electron transition-metal reactivity and radical polymerization processes. Angew Chem Int Ed 45:5058–5070.  https://doi.org/10.1002/anie.200503785CrossRefGoogle Scholar
  24. 24.
    Allan LEN, Perry MR, Shaver MP (2012) Organometallic mediated radical polymerization. Prog Polymer Sci 37:127–156.  https://doi.org/10.1016/j.progpolymsci.2011.07.004CrossRefGoogle Scholar
  25. 25.
    Chong YK, Le TPT, Moad G, Rizzardo E, Thang SH (1999) A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules 32:2071–2074.  https://doi.org/10.1021/ma981472pCrossRefGoogle Scholar
  26. 26.
    Debuigne A, Poli R, Jérôme C, Jérôme R, Detrembleur C (2009) Overview of cobalt-mediated radical polymerization: roots, state of the art and future prospects. Prog Polymer Sci 34:211–239.  https://doi.org/10.1016/j.progpolymsci.2008.11.003CrossRefGoogle Scholar
  27. 27.
    Maria S, Kaneyoshi H, Matyjaszewski K, Poli R (2007) Effect of electron donors on the radical polymerization of vinyl acetate mediated by [Co(acac)2]: degenerative transfer versus reversible homolytic cleavage of an organocobalt(III) complex. Chem Eur J 13:2480–2492.  https://doi.org/10.1002/chem.200601457CrossRefPubMedGoogle Scholar
  28. 28.
    Koumura K, Satoh K, Kamigaito M, Okamoto Y (2006) iodine transfer radical polymerization of vinyl acetate in fluoroalcohols for simultaneous control of molecular weight, stereospecificity, and regiospecificity. Macromolecules 39:4054–4061.  https://doi.org/10.1021/ma0602775CrossRefGoogle Scholar
  29. 29.
    Poli R (2015) New phenomena in organometallic-mediated radical polymerization (OMRP) and perspectives for control of less active monomers. Chem Eur J 21:6988–7001.  https://doi.org/10.1002/chem.201500015CrossRefPubMedGoogle Scholar
  30. 30.
    Kermagoret A, Jérôme C, Detrembleur C, Debuigne A (2015) In situ bidentate to tetradentate ligand exchange reaction in cobalt-mediated radical polymerization. Eur Polymer J 62:312–321.  https://doi.org/10.1016/j.eurpolymj.2014.08.003CrossRefGoogle Scholar
  31. 31.
    Stoffelbach F, Poli R, Maria S, Richard P (2007) How the interplay of different control mechanisms affects the initiator efficiency factor in controlled radical polymerization: an investigation using organometallic MoIII-based catalysts. J Organometal Chem 692:3133–3143.  https://doi.org/10.1016/j.jorganchem.2006.11.031CrossRefGoogle Scholar
  32. 32.
    Stoffelbach F, Poli R, Richard P (2003) Half-sandwich molybdenum(III) compounds containing diazadiene ligands and their use in the controlled radical polymerization of styrene. J Organometal Chem 663:269–276.  https://doi.org/10.1016/S0022-328X(02)01878-8CrossRefGoogle Scholar
  33. 33.
    Shchepalov AA, Grishin DF (2008) Dicyclopentadienyltitanium chlorides as regulators of free-radical polymerization of vinyl monomers. Polymer Sci A Polymer Chem 50(4):382–387.  https://doi.org/10.1134/S0965545X08040044CrossRefGoogle Scholar
  34. 34.
    Schroeder H, Lake BRM, Demeshko S, Shaver MP, Buback M (2015) A synthetic and multispectroscopic speciation analysis of controlled radical polymerization mediated by amine–bis(phenolate)iron complexes. Macromolecules 48:4329–4338.  https://doi.org/10.1021/acs.macromol.5b01175CrossRefGoogle Scholar
  35. 35.
    Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688.  https://doi.org/10.1021/cr990119uCrossRefPubMedGoogle Scholar
  36. 36.
    Vinas J, Chagneux N, Gigmes D, Trimaille T, Favier A, Bertin D (2008) SG1-based alkoxyamine bearing a N-succinimidyl ester: a versatile tool for advanced polymer synthesis. Polymer 49:3639–3647.  https://doi.org/10.1016/j.polymer.2008.06.017CrossRefGoogle Scholar
  37. 37.
    Moad G, Rizzardo E, Thang SH (2013) RAFT polymerization and some of its applications. Chem Asian J 8:1634–1644.  https://doi.org/10.1002/asia.201300262CrossRefPubMedGoogle Scholar
  38. 38.
    Wang J-S, Matyjaszewski K (1995) Controlled/”living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615.  https://doi.org/10.1021/ja00125a035CrossRefGoogle Scholar
  39. 39.
    Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(ii)/ methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28:1721–1723.  https://doi.org/10.1021/ma00109a056CrossRefGoogle Scholar
  40. 40.
    Fujimura K, Ouchi M, Sawamoto M (2015) Ferrocene cocatalysis for iron-catalyzed living radical polymerization: active, robust, and sustainable system under concerted catalysis by two iron complexes. Macromolecules 48:4294–4300.  https://doi.org/10.1021/acs.macromol.5b00836CrossRefGoogle Scholar
  41. 41.
    Poli R, Allan LEN, Shaver MP (2014) Iron-mediated reversible deactivation controlled radical polymerization. Prog Polymer Sci 39:1827–1845.  https://doi.org/10.1016/j.progpolymsci.2014.06.003CrossRefGoogle Scholar
  42. 42.
    De Roma A, Yanga H-J, Milione S, Capacchione C, Roviello G, Grassi A (2011) Atom transfer radical polymerization of methylmethacrylate mediated by a naphtyl–nickel(II) phosphane complex. Inorg Chem Commun 14:542–544.  https://doi.org/10.1016/j.inoche.2011.01.019CrossRefGoogle Scholar
  43. 43.
    Trotta JT, Fors BP (2016) Organic catalysts for photocontrolled polymerizations. Synlett 27:702–713.  https://doi.org/10.1055/s-0035-1561264CrossRefGoogle Scholar
  44. 44.
    Treat NJ, Sprafke H, Kramer JW, Clark PG, Barton BE, de Alaniz JR, Fors BP, Hawker CJ (2014) Metal-free atom transfer radical polymerization. J Am Chem Soc 136:16096–16101.  https://doi.org/10.1021/ja510389mCrossRefPubMedGoogle Scholar
  45. 45.
    Pan X, Lamson M, Yan J, Matyjaszewski K (2015) Photoinduced metal-free atom transfer radical polymerization of acrylonitrile. ACS Macro Lett 4:192–196.  https://doi.org/10.1021/mz500834gCrossRefGoogle Scholar
  46. 46.
    Treat NJ, Fors BP, Kramer JW, Christianson M, Chiu CY, de Alaniz JR, Hawker CJ (2014) Controlled radical polymerization of acrylates regulated by visible light. ACS Macro Lett 3:580–584.  https://doi.org/10.1021/mz500242aCrossRefGoogle Scholar
  47. 47.
    Miyake GM, Theriot JC (2014) Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light. Macromolecules 47:8255–8261.  https://doi.org/10.1021/ma502044fCrossRefGoogle Scholar
  48. 48.
    Xu J, Shanmugam S, Duong HT, Boyer C (2015) Organo-photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization. Polymer Chem 6:5615–5624.  https://doi.org/10.1039/C4PY01317DCrossRefGoogle Scholar
  49. 49.
    Shanmugam S, Boyer C (2016) Metal-free catalysts enable synthesis of polymers for biomedical and electronics applications. Science 352:1053–1054.  https://doi.org/10.1126/science.aaf7465CrossRefPubMedGoogle Scholar
  50. 50.
    Matheson RR (2000) The commercialization of controlled polymer synthesis. The Knowledge Foundation, CambridgeGoogle Scholar
  51. 51.
    Szwarc M (1968) Carbanions, living polymers and electron transfer processes. Interscience, NewYorkGoogle Scholar
  52. 52.
    Bywater S (1985) Anionic Polymerization. In: Mark HF, Bikales NM, Overberger CG, Menges G (eds) Encyclopedia polymer science & engineering, vol 2. Wiley-Interscience, NewYork, p 1Google Scholar
  53. 53.
    Szwarc M, Levy M, Milkovich R (1956) Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J Am Chem Soc 78:2656–2657.  https://doi.org/10.1021/ja01592a101CrossRefGoogle Scholar
  54. 54.
    Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101:3747–3792.  https://doi.org/10.1021/cr9901337CrossRefPubMedGoogle Scholar
  55. 55.
    Scott ND (1939) Method of polymerization. US Patent 2,181,771, 28 Nov 1939Google Scholar
  56. 56.
    Welch FJ (1960) Polymerization of Styrene by n-Butyllithium. II. Effect of Lewis acids and bases. J Am Chem Soc 82:6000–6005.  https://doi.org/10.1021/ja01508a009CrossRefGoogle Scholar
  57. 57.
    Burnett GM, Young RN (1966) The polymerization of substituted styrenes by butyl lithium—I. The initiation reaction. Eur Polym J 2:329–338.  https://doi.org/10.1016/0014-3057(66)90014-0CrossRefGoogle Scholar
  58. 58.
    Eberhardt GC, Butte WA (1964) A catalytic telomerization reaction of ethylene with aromatic hydrocarbons. J Org Chem 29:2928–2932.  https://doi.org/10.1021/jo01033a029CrossRefGoogle Scholar
  59. 59.
    Langer AW (1965) Reactions of chelated organolithium compounds. Trans NY Acad Sci 27:741–747.  https://doi.org/10.1111/j.2164-0947.1965.tb02233.xCrossRefGoogle Scholar
  60. 60.
    Tobolsky AV, Rogers CE (1959) Isoprene polymerization by organometallic compounds. II. J Polym Sci 40:73–89.  https://doi.org/10.1002/pol.1959.1204013605CrossRefGoogle Scholar
  61. 61.
    Gourdenne A, Sigwalt P (1967) Stability of the living polymers of dienes in relation with the preparation of block copolymers. Eur Polym J 3(3):481–499.  https://doi.org/10.1016/0014-3057(67)90016-XCrossRefGoogle Scholar
  62. 62.
    Guyot A, Vialle J (1970) Isoprene polymerization by butyllithium in cyclohexane. II. propagation reaction. J Macromol Sci A4:107–125.  https://doi.org/10.1080/00222337008060968CrossRefGoogle Scholar
  63. 63.
    Tobolsky AV, Boudreau RJ (1961) Ionic copolymerization of substituted styrenes. J Polym Sci 51:S53–S56.  https://doi.org/10.1002/pol.1961.1205115632CrossRefGoogle Scholar
  64. 64.
    Worsfold DJ, Bywater S (1964) Anionic polymerization of isoprene. Can J Chem 42:2884–2892.  https://doi.org/10.1139/v64-426CrossRefGoogle Scholar
  65. 65.
    Hsieh H, Kelley DJ, Tobolsky AV (1957) Polymerization of isoprene with lithium dispersions and lithium alkyls using tetrahydrofuran as solvent. J Polym Sci 26:240–242.  https://doi.org/10.1002/pol.1957.1202611315CrossRefGoogle Scholar
  66. 66.
    Lohr G (1974) Schulz GV (1974) Kinetics of anionic polymerization of methylmetacrylate with caesium and sodium as counterions in tetrahydrofuran. Eur Polym J 10:121–130.  https://doi.org/10.1016/0014-3057(74)90077-9CrossRefGoogle Scholar
  67. 67.
    Muller AHE, Hocker H, Schulz GV (1977) Rate constants of the tactic monomer addition in the anionic polymerization of methyl methacrylate in THF with cesium as counterion. Macromolecules 10:1086–1089.  https://doi.org/10.1021/ma60059a037CrossRefGoogle Scholar
  68. 68.
    Freyss D, Rempp P, Benoit H (1964) Polydispersity of anionically prepared block copolymers. J Polym Sci Polym Lett 2:217–222.  https://doi.org/10.1002/pol.1964.110020214CrossRefGoogle Scholar
  69. 69.
    Bailey JT, Bishop ET, Hendricks WR, Holden G, Legge NR (1966) Thermoplastic elastomers. Physical properties and applications. Rubber Age 98(10):69–74Google Scholar
  70. 70.
    Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101:3747–3792.  https://doi.org/10.1021/cr9901337CrossRefPubMedGoogle Scholar
  71. 71.
    Mayr H, Kempf B, Ofial AR (2003) π-nucleophilicity in carbon–carbon bond-forming reactions. Acc Chem Res 36(1):66–77.  https://doi.org/10.1021/ar020094cCrossRefPubMedGoogle Scholar
  72. 72.
    Mayr H (1999) Rate constants and reactivity ratios in carbocationic polymerizations. Ionic polymerization and related processing. NATO science series E, vol 359. Kluwer, Dordecht, p 99CrossRefGoogle Scholar
  73. 73.
    Kennedy JP (1975) Cationic polymerization of olefins: a critical inventory. Wiley-Interscience, New YorkGoogle Scholar
  74. 74.
    Kennedy JP, Marechal E (1982) Carbocationic polymerization. Wiley-Interscience, New York, p 85Google Scholar
  75. 75.
    Chang VSC, Kennedy JP, Ivan B (1980) New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). Polym Bull 3(6):339–346.  https://doi.org/10.1007/BF00255093CrossRefGoogle Scholar
  76. 76.
    Russell R, Moreau M, Charleux B, Vairon JP, Matyjaszewski K (1998) Stopped-Flow and 1H NMR study of the ionization of cumyl chloride by boron trichloride. Macromolecules 31:3775–3782.  https://doi.org/10.1021/ma971883qCrossRefGoogle Scholar
  77. 77.
    Kennedy JP, Ivan B (1992) Designed polymers by carbocationic macromolecular engineering. Theory and practice. Hanser Publishers, Munich, p 173Google Scholar
  78. 78.
    Ziegler K, Holzkamp E, Breil H, Martin H (1955) Polymerisation von Äthylen und anderen Olefinen. Angew Chem 67(16):426–426CrossRefGoogle Scholar
  79. 79.
    Ziegler K (1965) Consequences and development of an invention. rubber chemistry and technology. Rubber Chem Technol 38:23–36.  https://doi.org/10.5254/1.3535634CrossRefGoogle Scholar
  80. 80.
    Natta G (1956) Stereospezifische katalysen und isotaktische polymere. Angew Chem 68:393–403CrossRefGoogle Scholar
  81. 81.
    Natta G, Danusso F, Sianesi D (1959) Structure and reactivity of vinyl aromatic monomers in coordinated anionic polymerization and copolymerization. Makromol Chem 30:238–246.  https://doi.org/10.1002/macp.1959.020300116CrossRefGoogle Scholar
  82. 82.
    Beerman C, Bestian H (1959) Metallorganische Titan-Verbindungen als Polymerisationskatalysatoren. Angew Chem 71:618–623.  https://doi.org/10.1002/ange.19590711908CrossRefGoogle Scholar
  83. 83.
    Yermakov N, Zakharov V (1975) One component catalyst for olefin polymerization. Adv Catal 24:173–219Google Scholar
  84. 84.
    Pino P, Mulhauft R (1980) Stereospecific polymerization of propylene: an outlook 25 years after its discovery. Angew Chem Int Ed 19:857–875.  https://doi.org/10.1002/anie.19800857CrossRefGoogle Scholar
  85. 85.
    Zambelli A, Locatelli P, Rigamonti E (1979) Carbon-13 nuclear magnetic resonance analysis of tail-to-tail monomeric units and of saturated end groups in polypropylene. Macromolecules 12:156–159.  https://doi.org/10.1021/ma60067a034CrossRefGoogle Scholar
  86. 86.
    Zambelli A, Allegra G (1980) Reaction mechanism for syndiotactic specific polymerization of propene. Macromolecules 13:42–49.  https://doi.org/10.1021/ma60073a008CrossRefGoogle Scholar
  87. 87.
    Asakura T, Ando I, Nishioka A, Doi Y and Keii T (1977) 13C NMR analysis of chemical inversion in polypropylene. Makromol Chem 178:791–801.  https://doi.org/10.1002/macp.1977.021780316CrossRefGoogle Scholar
  88. 88.
    Doi Y, Asakura T (1975) Catalytic regulation for isotactic orientation in propylene polymerization with Ziegler-Natta catalyst. Makromol Chem 176:507–509.  https://doi.org/10.1002/macp.1975.021760221CrossRefGoogle Scholar
  89. 89.
    Zambelli A, Giongo M, Natta G (1968) Polymerization of propylene to syndiotactic polymer. IV. Addition to the double bond. Makromol Chem 112:183–196.  https://doi.org/10.1002/macp.1968.021120116CrossRefGoogle Scholar
  90. 90.
    Natta G (1958) Stereospecific polymerizations by means of coordinated anionic catalysis: introductory lecture. J Inorg Nucl Chem 8:589–611.  https://doi.org/10.1016/0022-1902(58)80234-1CrossRefGoogle Scholar
  91. 91.
    Pino P, Oschwald A, Ciardelli F, Carlini C, Chiellini E (1975) Stereoselection and stereoelection in α-olefin polymerization. In: Chien JCW (ed) Coordination polymerization. Academic Press, New York, pp 25–72Google Scholar
  92. 92.
    Arlman EG, Cossee P (1964) Ziegler-Natta catalysis III. Stereospecific polymerization of propene with the catalyst system TiCl3-AlEt3. J Catal 3:99–104.  https://doi.org/10.1016/0021-9517(64)90097-1CrossRefGoogle Scholar
  93. 93.
    Natta G, Pasquon I (1959) The kinetics of stereospecific polymerization of olefins. Adv Catal 11:1–68Google Scholar
  94. 94.
    Boor J (1979) Ziegler-Natta catalysts and polymerizations. Academic Press, New YorkGoogle Scholar
  95. 95.
    Sinn H, Kaminsky W, Vollmer HJ (1980) “Living polymers” on polymerization with extremely productive Ziegler catalysts. Angew Chem Int Ed 19:390–392.  https://doi.org/10.1002/anie.198003901CrossRefGoogle Scholar
  96. 96.
    Kaminsky W, Sinn H (2013) Methylaluminoxane: key component for new polymerization catalysts. Adv Polym Sci 258:1–28.  https://doi.org/10.1007/12_2013-226CrossRefGoogle Scholar
  97. 97.
    Kaminsky W (2004) The discovery of metallocene catalysts and their present state of the art. J Polym Sci Polym Chem Ed 42:3911–3921.  https://doi.org/10.1002/pola.20292CrossRefGoogle Scholar
  98. 98.
    Sinn H (1995) Proposals for structure and effect of methylalumoxane based on mass balances and phase separation experiments. Macromol Symp 97:27–52.  https://doi.org/10.1002/masy.19950970105CrossRefGoogle Scholar
  99. 99.
    Kaminsky W, Spiehl R (1989) Copolymerization of cycloalkenes with ethylene in presence of chiral zirconocene catalysts. Makromol Chem 190:515–526.  https://doi.org/10.1002/macp.1989.021900308CrossRefGoogle Scholar
  100. 100.
    Ewen JA, Jones RL, Razavi A, Ferrara JP (1988) Syndiospecific propylene polymerizations with Group IVB metallocenes. J Am Chem Soc 110:6255–6256.  https://doi.org/10.1021/ja00226a056CrossRefPubMedGoogle Scholar
  101. 101.
    Abu-Surrah AS, Rieger B (1996) Late transition metal complexes: catalysts for a new generation of organic polymers. Angew Chem Int Ed 35:2475–2477.  https://doi.org/10.1002/anie.199624751CrossRefGoogle Scholar
  102. 102.
    Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100:1169–1204.  https://doi.org/10.1021/cr9804644CrossRefPubMedGoogle Scholar
  103. 103.
    Small BL, Brookhart M, Bennett AMA (1998) Highly active iron and cobalt catalysts for the polymerization of ethylene. J Am Chem Soc 120:4049–4050.  https://doi.org/10.1021/ja9802100CrossRefGoogle Scholar
  104. 104.
    Britovsek GJP, Gibson VC, Wass DF (1999) The search for new-generation olefin polymerization catalysts: life beyond metallocenes. Angew Chem Int Ed 38:428–447.  https://doi.org/10.1002/(SICI)1521-3773(19990215)38:4%3c428:AID-ANIE428%3e3.0.CO;2-3CrossRefGoogle Scholar
  105. 105.
    Gibson VC, Wass DF (1999) Olefin polymerization catalysts. Chem Br 7:20–23Google Scholar
  106. 106.
    Zambelli A, Dipietro J, Gatti G (1963) The nature of active components in catalytic systems prepared from TiCl3, monoalkylaluminum dihalides, and electron-donor substances, in the polymerization of propylene. J Polym Sci 1:403–409.  https://doi.org/10.1002/pol.1963.100010136CrossRefGoogle Scholar
  107. 107.
    Doi Y, Takada M, Keii T (1979) Molecular weight distribution and kinetics of low-temperature propene polymerization with soluble vanadium-based ziegler catalysts. Bull Chem Soc Jpn 52:1802–1806.  https://doi.org/10.1246/bcsj.52.1802CrossRefGoogle Scholar
  108. 108.
    Doi Y, Ueki S, Keii T (1979) “Living” coordination polymerization of propene initiated by the soluble V(acac)3-Al(C2H5)2Cl system. Macromolecules 12:814–819.  https://doi.org/10.1021/ma60071a004CrossRefGoogle Scholar
  109. 109.
    Fukui Y, Murata M, Soga K (1999) Living polymerization of propylene and 1-hexene using bis-Cp type metallocene catalysts. Macromol Rapid Commun 20:637–640.  https://doi.org/10.1002/(SICI)1521-3927(19991201)20:12%3c637:AID-MARC637%3e3.0.CO;2-NCrossRefGoogle Scholar
  110. 110.
    Slomkowski S, Duda A (1993) Anionic ring-opening polymerization. In: Brunelle DJ (ed) Ringopening polymerization. Mechanisms, catalysis, structure, utility. Hanser, Munich, p 87Google Scholar
  111. 111.
    Natta G, Dall’Asta G (1969) Elastomers from cyclic olefins. In: Kennedy JP, Tornquist EGM (eds) Polymer chemistry of synthetic elastomers, part II, High polymer series, vol 23. Interscience, New York, p. 703Google Scholar
  112. 112.
    Grubbs RH (2003) Handbook of metathesis, vol 3. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  113. 113.
    Calderon N (1972) Olefin metathesis reaction. Acc Chem Res 5:127–132.  https://doi.org/10.1021/ar50052a002CrossRefGoogle Scholar
  114. 114.
    Calderon N, Ofstead EA, Ward JP, Judy WA, Kenneth W (1968) Scott Olefin metathesis. I. Acyclic vinylenic hydrocarbons. J Am Chem Soc 90:4133–4140.  https://doi.org/10.1021/ja01017a039CrossRefGoogle Scholar
  115. 115.
    Wallace KC, Liu AH, Dewan JC, Schrock AR (1988) Preparation and reactions of tantalum alkylidene complexes containing bulky phenoxide or thiolate ligands. Controlling ring-opening metathesis polymerization activity and mechanism through choice of anionic ligand. J Am Chem Soc 110:4964–4977.  https://doi.org/10.1021/ja00223a014CrossRefGoogle Scholar
  116. 116.
    Khosravi E, Feast WJ, Al-Hajaji AA, Leejarkpai T (2000) ROMP of n-alkyl norbornene dicarboxyimides: from classical to well-defined initiators, an overview. J Mol Cat A: Chem 160:1–11.  https://doi.org/10.1016/S1381-1169(00),00227-2CrossRefGoogle Scholar
  117. 117.
    Bielawski CW, Grubbs RH (2007) Living ring-opening metathesis polymerization Prog Polym Sci 32:1–29.  https://doi.org/10.1016/j.progpolymsci.2006.08.006CrossRefGoogle Scholar
  118. 118.
    Ivin KJ, Mol JC (1997) Olefin metathesis and metathesis polymerization. Academic Press, San DiegoGoogle Scholar
  119. 119.
    Andruzzi F, Pilcher G, Virmani Y, Plesch PH (1977) Enthalpy of polymerisation of 7-oxabicyclo[2.2.1]heptane, and exo- and endo-2-methyl-7-oxabicyclo[2.2.1]heptanes. Makromol Chem 178:236–2373.  https://doi.org/10.1002/macp.1977.021780822CrossRefGoogle Scholar
  120. 120.
    Bernaerts KV, Du Prez FE (2006) Dual/heterofunctional initiators for the combination of mechanistically distinct polymerization techniques. Prog Polym Sci 31:671–722.  https://doi.org/10.1016/j.progpolymsci.2006.08.007CrossRefGoogle Scholar
  121. 121.
    CrI S, Comǎniţǎ E, Pǎstrǎvanu M, Dumitriu S (1986) Progress in the field of bi- and poly-functional free-radical polymerization initiators. Prog Polym Sci 12:1–109.  https://doi.org/10.1016/0079-6700(86)90006-7CrossRefGoogle Scholar
  122. 122.
    Yagoi Y, Hizal G, Önen A, Serhatli I (1994) Synthetic routes to block copolymerization by changing mechanism from cationic polymerization to free radical polymerization. Macromol Symp 84:127–136.  https://doi.org/10.1002/masy.19940840116CrossRefGoogle Scholar
  123. 123.
    Mishra KM (1996) Synthesis of polyisobutylene-based macroinitiators and block copolymers via multimode polymerization. Macromolecules 29:5228–5230.  https://doi.org/10.1021/ma9603185CrossRefGoogle Scholar
  124. 124.
    Le D, Phan TNT, Autissier L, Charles L, Gigmes D (2016) Well-defined block copolymer synthesis via living cationic polymerization and nitroxide-mediated polymerization using carboxylic acid-based alkoxyamines as dual initiator. Polym Chem 8:1659–1667.  https://doi.org/10.1039/C5PY01934FCrossRefGoogle Scholar
  125. 125.
    Bernaerts KV, Du Prez FE (2005) Design of novel poly(methyl vinyl ether) containing AB and ABC block copolymers by the dual initiator strategy. Polymer 46:8469–8482.  https://doi.org/10.1016/j.polymer.2005.01.103CrossRefGoogle Scholar
  126. 126.
    Jung H, Brummelhuis N, Yang SK, Weck M (2013) One-pot synthesis of poly(norbornene)-block-poly(lactide) copolymers using a bifunctional initiator. Poly Chem 4:2837–2840.  https://doi.org/10.1039/c3py21067gCrossRefGoogle Scholar
  127. 127.
    Freudensprung I, Klapper M, Müllen K (2015) Triblock Terpolymers by simultaneous tandem block polymerization (STBP) Macromol. Rapid Comm 37:209–214.  https://doi.org/10.1002/marc.201500568CrossRefGoogle Scholar
  128. 128.
    Bielawski CW, Louie J, Grubbs RH (2000) Tandem catalysis: three mechanistically distinct reactions from a single ruthenium complex. J Am Chem Soc 122:12872–12873.  https://doi.org/10.1021/ja001698jCrossRefGoogle Scholar
  129. 129.
    Miura Y, Sakai Y, Taniguchi I (2003) Syntheses of well-defined poly(siloxane)-b-poly(styrene) and poly(norbornene)-b-poly(styrene) block copolymers using functional alkoxyamines. Polymer 44:603–611.  https://doi.org/10.1016/S0032-3861(02)00785-1CrossRefGoogle Scholar
  130. 130.
    Zhang C, Yang Y, He J (2013) Direct transformation of living anionic polymerization into RAFT based polymerization. Macromolecules 46:3985–3994.  https://doi.org/10.1021/ma4006457CrossRefGoogle Scholar
  131. 131.
    Brouwer HD, Schellekens MAJ, Klumperman B, Monteiro M, German AL (2000) Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition–fragmentation chain-transfer (RAFT) polymerization. J Polym Sci Polym Chem 38:3596–3603.  https://doi.org/10.1002/1099-0518(20001001)38:19%3c3596:AID-POLA150%3e3.0.CO;2-FCrossRefGoogle Scholar
  132. 132.
    Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37:2709–2717.  https://doi.org/10.1021/ma035468bCrossRefGoogle Scholar
  133. 133.
    Hales M, Barner-Kowollik T, Davis TP, Stenzel MH (2004) Shell-cross-linked vesicles synthesized from block copolymers of poly(d, l-lactide) and poly(N-isopropyl acrylamide) as thermoresponsive nanocontainers. Langmuir 20:10809–10817.  https://doi.org/10.1021/la0484016CrossRefPubMedGoogle Scholar
  134. 134.
    Nagai A, Hamaguchi T, Kikukawa K, Kawamoto E, Endo T (2007) Synthesis of polythiourethane-based macro chain transfer agents and their block copolymers with vinyl monomers via controlled multimode polymerization. Macromolecules 40:6454–6456.  https://doi.org/10.1021/ma071079wCrossRefGoogle Scholar
  135. 135.
    Agudelo NA, Elsen AM, He H, Lopez BL, Matyjaszewski K (2014) ABA Triblock copolymers from two mechanistic techniques: polycondensation and atom transfer radical polymerization. J Polym Sci Polym Chem 53:228–238.  https://doi.org/10.1002/pola.27300CrossRefGoogle Scholar
  136. 136.
    Coessens V, Matyjaszewski K (1999) End group transformation of polymers prepared by ATRP, substitution to azides. J Macromol Sci, Pure Appl Chem 36:667–679.  https://doi.org/10.1081/MA-100101556CrossRefGoogle Scholar
  137. 137.
    Bruce K, Javakhishvili I, Fogelstrom L, Carlmark A, Hvilstedb S, Malmstrom E (2014) Well-defined ABA- and BAB-type block copolymers of PDMAEMA and PCL. RSC Adv. 4:25809–25818.  https://doi.org/10.1039/c4ra04325aCrossRefGoogle Scholar
  138. 138.
    Fournier D, Hoogenboom R, Schubert US (2007) Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem Soc Rev 36:1369–1380.  https://doi.org/10.1039/b700809kCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations