Advertisement

Structure and Function of the Cochaperone Prefoldin

  • Rocío Arranz
  • Jaime Martín-Benito
  • José M. ValpuestaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1106)

Abstract

Molecular chaperones are key players in proteostasis, the balance between protein synthesis, folding, assembly and degradation. They are helped by a plethora of cofactors termed cochaperones, which direct chaperones towards any of these different, sometime opposite pathways. One of these is prefoldin (PFD), present in eukaryotes and in archaea, a heterohexamer whose best known role is the assistance to group II chaperonins (the Hsp60 chaperones found in archaea and the eukaryotic cytosolic) in the folding of proteins in the cytosol, in particular cytoskeletal proteins. However, over the last years it has become evident a more complex role for this cochaperone, as it can adopt different oligomeric structures, form complexes with other proteins and be involved in many other processes, both in the cytosol and in the nucleus, different from folding. This review intends to describe the structure and the many functions of this interesting macromolecular complex.

Keywords

Protein folding Molecular chaperone Chaperonin Group II chaperonin CCT TRiC Thermosome Cochaperone Prefoldin X-ray crystallography Electron microscopy 

Notes

Acknowledgments

Writing of this work was supported by the grant BFU2016-44202 (AEI/FEDER, EU) to JMV.

References

  1. Abe A, Takahashi-Niki K, Takekoshi Y, Shimizu T, Kitaura H, Maita H, Iguchi-Ariga SM, Ariga H (2013) Prefoldin plays a role as a clearance factor in preventing proteasome inhibitor-induced protein aggregation. J Biol Chem 288:27764–27776CrossRefGoogle Scholar
  2. Aikawa Y, Kida H, Nishitani Y, Miki K (2015) Expression, purification, crystallization and X-ray diffraction studies of the molecular chaperone prefoldin from Homo sapiens. Acta Crystallogr F Struct Biol Commun 71:1189–1193CrossRefGoogle Scholar
  3. Boulon S, Pradet-Balade B, Verheggen C, Molle D, Boireau S, Georgieva M, Azzag K, Robert MC, Ahmad Y, Neel H, Lamond AI, Bertrand E (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39:912–924CrossRefGoogle Scholar
  4. Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76CrossRefGoogle Scholar
  5. Chávez S, Puerto-Camacho P (2016) Prefoldins. eLS.  https://doi.org/10.1002/9780470015902.a0026334
  6. Danno A, Fukuda W, Yoshida M, Aki R, Tanaka T, Kanai T, Imanaka T, Fujiwara S (2008) Expression profiles and physiological roles of two types of prefoldins from the hyperthermophilic archaeon Thermococcus kodakaraensis. J Mol Biol 382:298–311CrossRefGoogle Scholar
  7. Delgehyr N, Wieland U, Rangone H, Pinson X, Mao G, Dzhindzhev NS, McLean D, Riparbelli MG, Llamazares S, Callaini G, Gonzalez C, Glover DM (2012) Drosophila Mgr, a Prefoldin subunit cooperating with von Hippel Lindau to regulate tubulin stability. PNAS USA 109:5729–5734CrossRefGoogle Scholar
  8. Djouder N, Metzler SC, Schmidt A, Wirbelauer C, Gstaiger M, Aebersold R, Hess D, Krek W (2007) S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 28:28–40CrossRefGoogle Scholar
  9. Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, Kumar R, Chiu W, Frydman J (2011) Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144:240–252CrossRefGoogle Scholar
  10. Fandrich M, Tito MA, Leroux MR, Rostom AA, Hartl FU, Dobson CM, Robinson CV (2000) Observation of the noncovalent assembly and disassembly pathways of the chaperone complex MtGimC by mass spectrometry. PNAS USA 97:14151–14155CrossRefGoogle Scholar
  11. Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17:952–966CrossRefGoogle Scholar
  12. Glover DJ, Clark DS (2015) Oligomeric assembly is required for chaperone activity of the filamentous gamma-prefoldin. FEBS J 282:2985–2997CrossRefGoogle Scholar
  13. Gómez-Puertas P, Martín-Benito J, Carrascosa JL, Willison KR, Valpuesta JM (2004) The substrate recognition mechanisms in chaperonins. J Mol Recognit 17:85–94CrossRefGoogle Scholar
  14. Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M, Vigneron M, Peter M, Krek W (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302:1208–1212CrossRefGoogle Scholar
  15. Hansen WJ, Cowan NJ, Welch WJ (1999) Prefoldin-nascent chain complexes in the folding of cytoskeletal proteins. J Cell Biol 145:265–277CrossRefGoogle Scholar
  16. Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, Skehel JM, de Lange T, Boulton SJ (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39:839–850CrossRefGoogle Scholar
  17. Kida H, Sugano Y, Iizuka R, Fujihashi M, Yohda M, Miki K (2008) Structural and molecular characterization of the prefoldin beta subunit from Thermococcus strain KS-1. J Mol Biol 383:465–474CrossRefGoogle Scholar
  18. Korndörfer IP, Dommel MK, Skerra A (2004) Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat Struct Mol Biol 11:1015–1020CrossRefGoogle Scholar
  19. Leroux MR, Fandrich M, Klunker D, Siegers K, Lupas AN, Brown JR, Schiebel E, Dobson CM, Hartl FU (1999) MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18:6730–6743CrossRefGoogle Scholar
  20. Llorca O, McCormack EA, Hynes G, Grantham J, Cordell J, Carrascosa JL, Willison KR, Fernandez JJ, Valpuesta JM (1999) Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402:693–696CrossRefGoogle Scholar
  21. Llorca O, Martín-Benito J, Ritco-Vonsovici M, Grantham J, Hynes GM, Willison KR, Carrascosa JL, Valpuesta JM (2000) Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J 19:5971–5979CrossRefGoogle Scholar
  22. Locascio A, Blazquez MA, Alabadi D (2013) Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction. Curr Biol 23:804–809CrossRefGoogle Scholar
  23. Lundin VF, Srayko M, Hyman AA, Leroux MR (2008) Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Dev Biol 313:320–334CrossRefGoogle Scholar
  24. Markus SM, Taneja SS, Logan SK, Li W, Ha S, Hittelman AB, Rogatsky I, Garabedian MJ (2002) Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus. Mol Biol Cell 13:670–682CrossRefGoogle Scholar
  25. Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA, Bartolini F, Cowan NJ, Valpuesta JM (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21:6377–6386CrossRefGoogle Scholar
  26. Martin-Benito J, Gomez-Reino J, Stirling PC, Lundin VF, Gomez-Puertas P, Boskovic J, Chacon P, Fernandez JJ, Berenguer J, Leroux MR, Valpuesta JM (2007) Divergent substrate-binding mechanisms reveal an evolutionary specialization of eukaryotic prefoldin compared to its archaeal counterpart. Structure 15:101–110CrossRefGoogle Scholar
  27. Millan-Zambrano G, Chavez S (2014) Nuclear functions of prefoldin. Open Biol 4:140085CrossRefGoogle Scholar
  28. Millan-Zambrano G, Rodriguez-Gil A, Penate X, de Miguel-Jimenez L, Morillo-Huesca M, Krogan N, Chavez S (2013) The prefoldin complex regulates chromatin dynamics during transcription elongation. PLoS Genet 9:e1003776CrossRefGoogle Scholar
  29. Mirón-García MC, Garrido-Godino AI, Garcia-Molinero V, Hernandez-Torres F, Rodriguez-Navarro S, Navarro F (2013) The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet 9:e1003297CrossRefGoogle Scholar
  30. Mirón-Garcia MC, Garrido-Godino AI, Martinez-Fernandez V, Fernandez-Pevida A, Cuevas-Bermudez A, Martin-Exposito M, Chavez S, de la Cruz J, Navarro F (2014) The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription. Nucleic Acids Res 42:9666–9676CrossRefGoogle Scholar
  31. Mita P, Savas JN, Ha S, Djouder N, Yates JR III, Logan SK (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/Prefoldin-like complex. PLoS One 8:e63879CrossRefGoogle Scholar
  32. Mori K, Maeda Y, Kitaura H, Taira T, Iguchi-Ariga SM, Ariga H (1998) MM-1, a novel c-Myc-associating protein that represses transcriptional activity of c-Myc. J Biol Chem 273:29794–29800CrossRefGoogle Scholar
  33. Mousnier A, Kubat N, Massias-Simon A, Ségéral E, Rain JC, Benarous R, Emiliani S, Dargemont C (2007) von Hippel Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step. PNAS USA 104:13615–13620CrossRefGoogle Scholar
  34. Ohtaki A, Kida H, Miyata Y, Ide N, Yonezawa A, Arakawa T, Iizuka R, Noguchi K, Kita A, Odaka M, Miki K, Yohda M (2008) Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins. J Mol Biol 376:1130–1141CrossRefGoogle Scholar
  35. Okochi M, Yoshida T, Maruyama T, Kawarabayasi Y, Kikuchi H, Yohda M (2002) Pyrococcus prefoldin stabilizes protein-folding intermediates and transfers them to chaperonins for correct folding. Biochem Biophys Res Commun 291:769–774CrossRefGoogle Scholar
  36. Okochi M, Nomura T, Zako T, Arakawa T, Iizuka R, Ueda H, Funatsu T, Leroux M, Yohda M (2004) Kinetics and binding sites for interaction of the prefoldin with a group II chaperonin: contiguous non-native substrate and chaperonin binding sites in the archaeal prefoldin. J Biol Chem 279:31788–31795CrossRefGoogle Scholar
  37. Rommelaere H, De Neve M, Neirynck K, Peelaers D, Waterschoot D, Goethals M, Fraeyman N, Vandekerckhove J, Ampe C (2001) Prefoldin recognition motifs in the nonhomologous proteins of the actin and tubulin families. J Biol Chem 276:41023–41028CrossRefGoogle Scholar
  38. Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, Hartl FU (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 18:75–84CrossRefGoogle Scholar
  39. Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621–632CrossRefGoogle Scholar
  40. Simons CT, Staes A, Rommelaere H, Ampe C, Lewis SA, Cowan NJ (2004) Selective contribution of eukaryotic prefoldin subunits to actin and tubulin binding. J Biol Chem 279:4196–4203CrossRefGoogle Scholar
  41. Skjærven L, Cuellar J, Martinez A, Valpuesta JM (2015) Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 589:2522–2532CrossRefGoogle Scholar
  42. Sun S, Tang Y, Lou X, Zhu L, Yang K, Zhang B, Shi H, Wang C (2007) UXT is a novel and essential cofactor in the NF-kappaB transcriptional enhanceosome. J Cell Biol 178:231–244CrossRefGoogle Scholar
  43. Takano M, Tashiro E, Kitamura A, Maita H, Iguchi-Ariga SM, Kinjo M, Ariga H (2014) Prefoldin prevents aggregation of alpha-synuclein. Brain Res 1542:186–194CrossRefGoogle Scholar
  44. Tashiro E, Zako T, Muto H, Itoo Y, Sorgjerd K, Terada N, Abe A, Miyazawa M, Kitamura A, Kitaura H, Kubota H, Maeda M, Momoi T, Iguchi-Ariga SM, Kinjo M, Ariga H (2013) Prefoldin protects neuronal cells from polyglutamine toxicity by preventing aggregation formation. J Biol Chem 288:19958–19972CrossRefGoogle Scholar
  45. Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873CrossRefGoogle Scholar
  46. Walton TA, Sousa MC (2004) Crystal structure of Skp, a Prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol Cell 15:367–374CrossRefGoogle Scholar
  47. Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM (2006) Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol Cell 21:123–133CrossRefGoogle Scholar
  48. Whitehead TA, Boonyaratanakornkit BB, Hollrigl V, Clark DS (2007) A filamentous molecular chaperone of the prefoldin family from the deep-sea hyperthermophile Methanocaldococcus jannaschii. Protein Sci 16:626–634CrossRefGoogle Scholar
  49. Zako T, Iizuka R, Okochi M, Nomura T, Ueno T, Tadakuma H, Yohda M, Funatsu T (2005) Facilitated release of substrate protein from prefoldin by chaperonin. FEBS Lett 579:3718–3724CrossRefGoogle Scholar
  50. Zako T, Sahlan M, Yamamoto YY, Tai PT, Sakai K, Maeda M, Yohda M (2016) Contribution of the C-terminal region of a group II chaperonin to its interaction with prefoldin and substrate transfer. J Mol Biol 428:2405–2417CrossRefGoogle Scholar
  51. Zang Y, Jin M, Wang H, Cui Z, Kong L, Liu C, Cong Y (2016) Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM. Nat Struct Mol Biol 23:1083–1091CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rocío Arranz
    • 1
  • Jaime Martín-Benito
    • 1
  • José M. Valpuesta
    • 1
    Email author
  1. 1.Centro Nacional de Biotecnología (CNB-CSIC)MadridSpain

Personalised recommendations