Advertisement

The Yeast Prefoldin Bud27

  • Verónica Martínez-Fernández
  • Ana Isabel Garrido-Godino
  • Abel Cuevas-Bermudez
  • Francisco NavarroEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1106)

Abstract

Bud27 and its human orthologue URI (unconventional prefoldin RPB5-interactor) are members of the prefoldin (PFD) family of ATP-independent molecular chaperones binding the Rpb5 subunit to all three nuclear eukaryotic RNA polymerases (RNA pols). Bud27/URI are considered to function as a scaffold protein able to assemble additional members of the prefoldin (PDF) family in both human and yeast. Bud27 and URI are not subunits of the canonical PFD/GimC complex and not only the composition but also other functions independent of the PFD/GimC complex have been described for Bud27 and URI. Bud27 interacts only with Pfd6 but no other components of the R2TP/PFDL. Furthermore previously reported interaction between Bud27 and Pfd2 was not later confirmed. These results point to major differences in the prefoldin-like complex composition between yeast and other organisms, suggesting also important differences in functions. Furthermore, this assumption could be extended to the R2TP/PFDL complex, which has been shown to differ between different organisms and has not been identified in yeast. This casts doubt on whether Bud27 cooperation with prefoldin and other components of the R2TP/PFDL modules are required for its action. This could be extended to URI and point to a role of Bud27/URI in cell functions more relevant than this previously proposed as co-prefoldin.

Keywords

Transcription RNA polymerases Rpb5 Prefoldin-like Bud27 RNA polymerases assembly Saccharomyces cerevisiae Chromatin remodeler TOR pathway Ribosome biogenesis 

Notes

Funding Sources

This work has been supported by grants from the Spanish Ministry of Economy and Competitiveness, MINECO, and FEDER funds (BFU2016-77728-C3-2-P AEI-FEDER to F.) and Junta de Andalucía (BIO258).

V.M.F was recipient of a fellowship from Junta de Andalucía and a postdoctoral fellowship from the Junta de Andalucía-University of Jaén. A.I.G-G was a recipient of MEC and a postdoctoral fellowship from the University of Jaén. A C-B.is a recipient of a FPI predoctoral contract from MINECO.

References

  1. Albanese V, Yam AY-W, Baughman J, Parnot C, Frydman J (2006) Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124(1):75–88CrossRefGoogle Scholar
  2. Albert B, Knight B, Merwin J, Martin V, Ottoz D, Gloor Y et al (2016) A molecular titration system coordinates ribosomal protein gene transcription with ribosomal RNA synthesis. Mol Cell 64(4):720–733CrossRefGoogle Scholar
  3. Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jády BE et al (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 180(3):579–595CrossRefGoogle Scholar
  4. Boulon S, Pradet-Balade B, Verheggen C, Molle D, Boireau S, Georgieva M et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912–924CrossRefGoogle Scholar
  5. Boulon S, Bertrand E, Pradet-Balade B (2012) HSP90 and the R2TP co-chaperone complex: building multi-protein machineries essential for cell growth and gene expression. RNA Biol 1:9(2)Google Scholar
  6. Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument-Bromage H et al (1996) RSC, an essential, abundant chromatin-remodeling complex. Cell 87(7):1249–1260CrossRefGoogle Scholar
  7. Ciesla M, Makala E, Plonka M, Bazan R, Gewartowski K, Dziembowski A et al (2015) Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae. Mol Cell Biol 35(7):1169–1181CrossRefGoogle Scholar
  8. Cloutier P, Coulombe B (2010) New insights into the biogenesis of nuclear RNA polymerases? Biochem Cell Biol 88(2):211–221CrossRefGoogle Scholar
  9. Cloutier P, Poitras C, Durand M, Hekmat O, Fiola-Masson É, Bouchard A et al (2017) R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 8:15615CrossRefGoogle Scholar
  10. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806–810CrossRefGoogle Scholar
  11. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS et al (2010) The genetic landscape of a cell. Science 327(5964):425–431CrossRefGoogle Scholar
  12. Czeko E, Seizl M, Augsberger C, Mielke T, Cramer P (2011) Iwr1 directs RNA polymerase II nuclear import. Mol Cell 42(2):261–266CrossRefGoogle Scholar
  13. Delgermaa L, Hayashi N, Dorjsuren D, Nomura T, Thuy LT-T, Murakami S (2004) Subcellular localization of RPB5-mediating protein and its putative functional partner. Mol Cell Biol 24(19):8556–8566CrossRefGoogle Scholar
  14. Deplazes A, Möckli N, Luke B, Auerbach D, Peter M (2009) Yeast Uri1p promotes translation initiation and may provide a link to cotranslational quality control. EMBO J 28(10):1429–1441CrossRefGoogle Scholar
  15. Dever TE (2002) Gene-specific regulation by general translation factors. Cell 108(4):545–556CrossRefGoogle Scholar
  16. Dorjsuren D, Lin Y, Wei W, Yamashita T, Nomura T, Hayashi N et al (1998) RMP, a novel RNA polymerase II subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol Cell Biol 18(12):7546–7555CrossRefGoogle Scholar
  17. Esberg A, Moqtaderi Z, Fan X, Lu J, Struhl K, Byström A (2011) Iwr1 protein is important for preinitiation complex formation by all three nuclear RNA polymerases in Saccharomyces cerevisiae. PLoS One 6(6):e20829CrossRefGoogle Scholar
  18. Forget D, Lacombe AA, Cloutier P, Al-Khoury R, Bouchard A, Lavallee-Adam M et al (2010) The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol Cell Proteomics 9(12):2827–2839CrossRefGoogle Scholar
  19. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70(1):603–647CrossRefGoogle Scholar
  20. Garcia A, Rosonina E, Manley JL, Calvo O (2010) Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation. Mol Cell Biol 30(21):5180–5193CrossRefGoogle Scholar
  21. Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5(10):827–835CrossRefGoogle Scholar
  22. Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional α-and γ-tubulin. EMBO J 17(4):952–966CrossRefGoogle Scholar
  23. Gomez-Navarro N, Estruch F (2015) Different pathways for the nuclear import of yeast RNA polymerase II. Biochim Biophys ActaGoogle Scholar
  24. González A, Hall MN (2017) Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 36(4):397–408 e201696010CrossRefGoogle Scholar
  25. Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M et al (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302(5648):1208–1212CrossRefGoogle Scholar
  26. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98(8):4569–4574CrossRefGoogle Scholar
  27. Kirchner J, Vissi E, Gross S, Szoor B, Rudenko A, Alphey L et al (2008) Drosophila Uri, a PP1alpha binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity. BMC Mol Biol 9:36CrossRefGoogle Scholar
  28. Lee J, Moir RD, McIntosh KB, Willis IM (2012) TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Mol Cell 45(6):836–843CrossRefGoogle Scholar
  29. Leroux MR, Fändrich M, Klunker D, Siegers K, Lupas AN, Brown JR et al (1999) MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18(23):6730–6743CrossRefGoogle Scholar
  30. Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA et al (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21(23):6377–6386CrossRefGoogle Scholar
  31. Martínez-Fernández V, Garrido-Godino AI, Cuevas-Bermudez A, Navarro F, eds (2015) Cytoplasmic and Nuclear Functionsfor the Prefoldin-like URI/Bud27. Nova Science Publishers, IncGoogle Scholar
  32. Mayer C, Grummt I (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25(48):6384–6391CrossRefGoogle Scholar
  33. Millán-Zambrano G, Chávez S (2014) Nuclear functions of prefoldin. Open Biol 4(7):140085CrossRefGoogle Scholar
  34. Mirón-García MC, Garrido-Godino AI, García-Molinero V, Hernández-Torres F, Rodríguez-Navarro S, Navarro F (2013) The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet 9(2):e1003297CrossRefGoogle Scholar
  35. Mirón-García MC, Garrido-Godino AI, Martínez-Fernández V, Fernández-Pevida A, Cuevas-Bermúdez A, Martín-Expósito M et al (2014) The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription. Nucleic Acids Res 42(15):9666–9676CrossRefGoogle Scholar
  36. Mita P, Savas JN, Djouder N, Yates JR, Ha S, Ruoff R et al (2011) Regulation of androgen receptor-mediated transcription by RPB5 binding protein URI/RMP. Mol Cell Biol 31(17):3639–3652CrossRefGoogle Scholar
  37. Mita P, Savas JN, Ha S, Djouder N, Yates JR III, Logan SK (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One 8(5):e63879CrossRefGoogle Scholar
  38. Mockli N, Deplazes A, Hassa PO, Zhang Z, Peter M, Hottiger MO et al (2007) Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. BioTechniques 42(6):725–730CrossRefGoogle Scholar
  39. Muñoz-Galván S, Jimeno S, Rothstein R, Aguilera A (2013) Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid. PLoS Genet 9(1):e1003237CrossRefGoogle Scholar
  40. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG et al (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21(13):4347–4368CrossRefGoogle Scholar
  41. Rakwalska M, Rospert S (2004) The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae. Mol Cell Biol 24(20):9186–9197CrossRefGoogle Scholar
  42. Rivera-Calzada A, Pal M, Munoz-Hernandez H, Luque-Ortega JR, Gil-Carton D, Degliesposti G et al (2017) The structure of the R2TP complex defines a platform for recruiting diverse client proteins to the HSP90 molecular chaperone system. Structure 25(7):1145–1152 e4CrossRefGoogle Scholar
  43. Soutourina J, Bordas-Le Floch V, Gendrel G, Flores A, Ducrot C, Dumay-Odelot H et al (2006) Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol Cell Biol 26(13):4920–4933CrossRefGoogle Scholar
  44. Van Leuven F, Torrekens S, Moechars D, Hilliker C, Buellens M, Bollen M et al (1998) Molecular cloning of a gene on chromosome 19q12 coding for a novel intracellular protein: analysis of expression in human and mouse tissues and in human tumor cells, particularly reed–Sternberg cells in Hodgkin disease. Genomics 54(3):511–520CrossRefGoogle Scholar
  45. Vernekar DV, Bhargava P (2015) Yeast Bud27 modulates the biogenesis of Rpc128 and Rpc160 subunits and the assembly of RNA polymerase III. Biochim Biophys Acta 1849(11):1340–1353CrossRefGoogle Scholar
  46. Wang Y, Zhang X, Zhang H, Lu Y, Huang H, Dong X et al (2012) Coiled-coil networking shapes cell molecular machinery. Mol Biol Cell 23(19):3911–3922CrossRefGoogle Scholar
  47. Wei W, Gu JX, Zhu CQ, Sun FY, Dorjsuren D, Lin Y et al (2003) Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein (RMP). Cell Res 13(2):111–120CrossRefGoogle Scholar
  48. Zhao R, Davey M, Hsu Y-C, Kaplanek P, Tong A, Parsons AB et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715–727CrossRefGoogle Scholar
  49. Zhong T, Arndt KT (1993) The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73(6):1175–1186CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Verónica Martínez-Fernández
    • 1
  • Ana Isabel Garrido-Godino
    • 1
  • Abel Cuevas-Bermudez
    • 1
  • Francisco Navarro
    • 1
    Email author
  1. 1.Departamento de Biología Experimental, Facultad de Ciencias ExperimentalesUniversidad de JaénJaénSpain

Personalised recommendations