Skip to main content

Roles and Functions of the Unconventional Prefoldin URI

  • Chapter
  • First Online:
Prefoldins: the new chaperones

Abstract

Almost 15 years ago, the URI prefoldin-like complex was discovered by Krek and colleagues in immunoprecipitation experiments conducted in mammalian cells with the aim of identifying new binding partners of the E3 ubiquitin-protein ligase S-phase kinase-associated protein 2 (SKP2) (Gstaiger et al. Science 302(5648):1208–1212, 2003). The URI prefoldin-like complex is a heterohexameric chaperone complex comprising two α and four β subunits (α2β4). The α subunits are URI and STAP1, while the β subunits are PFDN2, PFDN6, and PFDN4r, one of which is probably present in duplicate. Elucidating the roles and functions of these components in vitro and in vivo will help to clarify the mechanistic behavior of what appears to be a remarkably important cellular machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergmann A (2002) Survival signaling goes BAD. Dev Cell 3(5):607–608

    Article  CAS  PubMed  Google Scholar 

  • Betz JL, Chang M, Washburn TM, Porter SE, Mueller CL, Jaehning JA (2002) Phenotypic analysis of Paf1/RNA polymerase II complex mutations reveals connections to cell cycle regulation, protein synthesis, and lipid and nucleic acid metabolism. Mol Gen Genomics 268(2):272–285

    Article  CAS  Google Scholar 

  • Boulon S, Pradet-Balade B, Verheggen C, Molle D, Boireau S, Georgieva M et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt M, Grazioso TP, Fawal MA, Tummala KS, Torres-Ruiz R, Rodriguez-Perales S et al (2017) mTORC1 inactivation promotes colitis-induced colorectal cancer but protects from APC loss-dependent tumorigenesis. Cell Metab 19

    Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451

    Article  CAS  PubMed  Google Scholar 

  • Buren S, Gomes AL, Teijeiro A, Fawal MA, Yilmaz M, Tummala KS et al (2016) Regulation of OGT by URI in response to glucose confers c-MYC-dependent survival mechanisms. Cancer Cell 30(2):290–307

    Article  CAS  PubMed  Google Scholar 

  • Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J et al (2002) HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32(4):676–680

    Article  CAS  PubMed  Google Scholar 

  • Cloutier P, Poitras C, Durand M, Hekmat O, Fiola-Masson E, Bouchard A et al (2017) R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 8:15615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424(6951):952–956

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW et al (2002) Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 3(5):631–643

    Article  CAS  PubMed  Google Scholar 

  • Davis SJ, Sheppard KE, Pearson RB, Campbell IG, Gorringe KL, Simpson KJ (2013) Functional analysis of genes in regions commonly amplified in high-grade serous and endometrioid ovarian cancer. Clin Cancer Res 19(6):1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Delgermaa L, Hayashi N, Dorjsuren D, Nomura T, le TT T, Murakami S (2004) Subcellular localization of RPB5-mediating protein and its putative functional partner. Mol Cell Biol 24(19):8556–8566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djouder N, Metzler SC, Schmidt A, Wirbelauer C, Gstaiger M, Aebersold R et al (2007) S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 28(1):28–40

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9(1):102–110

    Article  CAS  PubMed  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79(2):425–449

    Article  CAS  PubMed  Google Scholar 

  • Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17(4):952–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes AL, Teijeiro A, Buren S, Tummala KS, Yilmaz M, Waisman A et al (2016) Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30(1):161–175

    Article  CAS  PubMed  Google Scholar 

  • Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M et al (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302(5648):1208–1212

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Li X, Liang Y, Qiao L, Ran D, Lu Y et al (2013a) Upregulation of URI/RMP gene expression in cervical cancer by high-throughput tissue microarray analysis. Int J Clin Exp Pathol 6(4):669–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Liang Y, Qiao L, Li X, Lu Y, Zheng Q (2013b) Expression analysis of URI/RMP gene in endometrioid adenocarcinoma by tissue microarray immunohistochemistry. Int J Clin Exp Pathol 6(11):2396–2403

    PubMed  PubMed Central  Google Scholar 

  • Gu J, Liang Y, Qiao L, Lu Y, Hu X, Luo D et al (2015) URI expression in cervical cancer cells is associated with higher invasion capacity and resistance to cisplatin. Am J Cancer Res 5(4):1353–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ (2001) p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A 98(17):9666–9670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S et al (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39(6):839–850

    Article  CAS  PubMed  Google Scholar 

  • Houry WA, Bertrand E, Coulombe B (2018) The PAQosome, an R2TP-based chaperone for quaternary structure formation. Trends Biochem Sci 43(1):4–9

    Article  CAS  PubMed  Google Scholar 

  • Kakihara Y, Houry WA (2012) The R2TP complex: discovery and functions. Biochim Biophys Acta 1823(1):101–107

    Article  CAS  PubMed  Google Scholar 

  • Kakihara Y, Makhnevych T, Zhao L, Tang W, Houry WA (2014) Nutritional status modulates box C/D snoRNP biogenesis by regulated subcellular relocalization of the R2TP complex. Genome Biol 15(7):404

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamano Y, Saeki M, Egusa H, Kakihara Y, Houry WA, Yatani H et al (2013) PIH1D1 interacts with mTOR complex 1 and enhances ribosome RNA transcription. FEBS Lett 587(20):3303–3308

    Article  CAS  PubMed  Google Scholar 

  • Klumpp S, Krieglstein J (2002) Serine/threonine protein phosphatases in apoptosis. Curr Opin Pharmacol 2(4):458–462

    Article  CAS  PubMed  Google Scholar 

  • Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V et al (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23(12):4207–4218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marengo A, Rosso C, Bugianesi E (2016) Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 67:103–117

    Article  CAS  PubMed  Google Scholar 

  • Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA et al (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21(23):6377–6386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeegan KS, Debieux CM, Boulon S, Bertrand E, Watkins NJ (2007) A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol Cell Biol 27(19):6782–6793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E et al (2012) Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5(217):ra24

    Article  PubMed  PubMed Central  Google Scholar 

  • Mita P, Savas JN, Djouder N, Yates JR 3rd, Ha S, Ruoff R et al (2011) Regulation of androgen receptor-mediated transcription by RPB5 binding protein URI/RMP. Mol Cell Biol 31(17):3639–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller CL, Jaehning JA (2002) Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol Cell Biol 22(7):1971–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3):709–719

    Article  CAS  PubMed  Google Scholar 

  • Noske A, Henricksen LA, LaFleur B, Zimmermann AK, Tubbs A, Singh S et al (2015) Characterization of the 19q12 amplification including CCNE1 and URI in different epithelial ovarian cancer subtypes. Exp Mol Pathol 98(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Nwachukwu JC, Mita P, Ruoff R, Ha S, Wang Q, Huang SJ et al (2009) Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells. Cancer Res 69(7):3140–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palancade B, Bensaude O (2003) Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem 270(19):3859–3870

    Article  CAS  PubMed  Google Scholar 

  • Parusel CT, Kritikou EA, Hengartner MO, Krek W, Gotta M (2006) URI-1 is required for DNA stability in C. elegans. Development 133(4):621–629

    Article  CAS  PubMed  Google Scholar 

  • Porter SE, Washburn TM, Chang M, Jaehning JA (2002) The yeast pafl-rNA polymerase II complex is required for full expression of a subset of cell cycle-regulated genes. Eukaryot Cell 1(5):830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renard CA, Fourel G, Bralet MP, Degott C, De La Coste A, Perret C et al (2000) Hepatocellular carcinoma in WHV/N-myc2 transgenic mice: oncogenic mutations of beta-catenin and synergistic effect of p53 null alleles. Oncogene 19(22):2678–2686

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Calzada A, Pal M, Munoz-Hernandez H, Luque-Ortega JR, Gil-Carton D, Degliesposti G et al (2017) The structure of the R2TP complex defines a platform for recruiting diverse client proteins to the HSP90 molecular chaperone system. Structure 25(7):1145–1152 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ, Shanmugam KS, Copeland TD, Guszczynski T et al (2005) The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol 25(2):612–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E et al (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 18(1):75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103(4):621–632

    Article  CAS  PubMed  Google Scholar 

  • Taneja SS, Ha S, Swenson NK, Torra IP, Rome S, Walden PD et al (2004) ART-27, an androgen receptor coactivator regulated in prostate development and cancer. J Biol Chem 7

    Google Scholar 

  • Theurillat JP, Metzler SC, Henzi N, Djouder N, Helbling M, Zimmermann AK et al (2011) URI is an oncogene amplified in ovarian cancer cells and is required for their survival. Cancer Cell 19(3):317–332

    Article  CAS  PubMed  Google Scholar 

  • Tummala KS, Gomes AL, Yilmaz M, Grana O, Bakiri L, Ruppen I et al (2014) Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26(6):826–839

    Article  CAS  PubMed  Google Scholar 

  • Tummala KS, Brandt M, Teijeiro A, Grana O, Schwabe RF, Perna C et al (2017) Hepatocellular carcinomas originate predominantly from hepatocytes and benign lesions from hepatic progenitor cells. Cell Rep 19(3):584–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umemura A, Park EJ, Taniguchi K, Lee JH, Shalapour S, Valasek MA et al (2014) Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition. Cell Metab 4

    Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL et al (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93(5):863–873

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Garabedian MJ, Logan SK (2015) URI1 amplification in uterine carcinosarcoma associates with chemo-resistance and poor prognosis. Am J Cancer Res 5(7):2320–2329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wells L, Vosseller K, Hart GW (2003) A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell Mol Life Sci 60(2):222–228

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Bian H, Zhang F, Mi R, Wang Q, Lu Y et al (2017) URI promotes the migration and invasion of human cervical cancer cells potentially via upregulation of vimentin expression. Am J Transl Res 9(6):3037–3047

    PubMed  PubMed Central  Google Scholar 

  • Yart A, Gstaiger M, Wirbelauer C, Pecnik M, Anastasiou D, Hess D et al (2005) The HRPT2 tumor suppressor gene product parafibromin associates with human PAF1 and RNA polymerase II. Mol Cell Biol 25(12):5052–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai N, Zhao ZL, Cheng MB, Di YW, Yan HX, Cao CY et al (2012) Human PIH1 associates with histone H4 to mediate the glucose-dependent enhancement of pre-rRNA synthesis. J Mol Cell Biol 4(4):231–241

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang H, Ye L (2006) Effects of hepatitis B virus X protein on the development of liver cancer. J Lab Clin Med 147(2):58–66

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Pan YF, Ding ZW, Yang GZ, Tan YX, Yang C et al (2015) RMP promotes venous metastases of hepatocellular carcinoma through promoting IL-6 transcription. Oncogene 34(12):1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715–727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness, and co-funded by ERDF-EU (FEDER, SAF2016-76598-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Djouder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaves-Pérez, A., Thompson, S., Djouder, N. (2018). Roles and Functions of the Unconventional Prefoldin URI. In: Djouder, N. (eds) Prefoldins: the new chaperones. Advances in Experimental Medicine and Biology, vol 1106. Springer, Cham. https://doi.org/10.1007/978-3-030-00737-9_7

Download citation

Publish with us

Policies and ethics