Roles and Functions of the Unconventional Prefoldin URI

  • Almudena Chaves-Pérez
  • Sebastian Thompson
  • Nabil DjouderEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1106)


Almost 15 years ago, the URI prefoldin-like complex was discovered by Krek and colleagues in immunoprecipitation experiments conducted in mammalian cells with the aim of identifying new binding partners of the E3 ubiquitin-protein ligase S-phase kinase-associated protein 2 (SKP2) (Gstaiger et al. Science 302(5648):1208–1212, 2003). The URI prefoldin-like complex is a heterohexameric chaperone complex comprising two α and four β subunits (α2β4). The α subunits are URI and STAP1, while the β subunits are PFDN2, PFDN6, and PFDN4r, one of which is probably present in duplicate. Elucidating the roles and functions of these components in vitro and in vivo will help to clarify the mechanistic behavior of what appears to be a remarkably important cellular machine.


GimC Prefoldin-like URI RNA polymerase II R2TP complex Chaperone proteostasis genetically engineered mouse models (GEMMs) cancer environmental factors stress signaling mTOR PP1 Erα OGT AhR parafibromin 



This work was supported by the Spanish Ministry of Economy and Competitiveness, and co-funded by ERDF-EU (FEDER, SAF2016-76598-R).


  1. Bergmann A (2002) Survival signaling goes BAD. Dev Cell 3(5):607–608CrossRefGoogle Scholar
  2. Betz JL, Chang M, Washburn TM, Porter SE, Mueller CL, Jaehning JA (2002) Phenotypic analysis of Paf1/RNA polymerase II complex mutations reveals connections to cell cycle regulation, protein synthesis, and lipid and nucleic acid metabolism. Mol Gen Genomics 268(2):272–285CrossRefGoogle Scholar
  3. Boulon S, Pradet-Balade B, Verheggen C, Molle D, Boireau S, Georgieva M et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912–924CrossRefGoogle Scholar
  4. Brandt M, Grazioso TP, Fawal MA, Tummala KS, Torres-Ruiz R, Rodriguez-Perales S et al (2017) mTORC1 inactivation promotes colitis-induced colorectal cancer but protects from APC loss-dependent tumorigenesis. Cell Metab 19Google Scholar
  5. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366CrossRefGoogle Scholar
  6. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451CrossRefGoogle Scholar
  7. Buren S, Gomes AL, Teijeiro A, Fawal MA, Yilmaz M, Tummala KS et al (2016) Regulation of OGT by URI in response to glucose confers c-MYC-dependent survival mechanisms. Cancer Cell 30(2):290–307CrossRefGoogle Scholar
  8. Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J et al (2002) HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32(4):676–680CrossRefGoogle Scholar
  9. Cloutier P, Poitras C, Durand M, Hekmat O, Fiola-Masson E, Bouchard A et al (2017) R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 8:15615CrossRefGoogle Scholar
  10. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219CrossRefGoogle Scholar
  11. Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424(6951):952–956CrossRefGoogle Scholar
  12. Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW et al (2002) Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 3(5):631–643CrossRefGoogle Scholar
  13. Davis SJ, Sheppard KE, Pearson RB, Campbell IG, Gorringe KL, Simpson KJ (2013) Functional analysis of genes in regions commonly amplified in high-grade serous and endometrioid ovarian cancer. Clin Cancer Res 19(6):1411–1421CrossRefGoogle Scholar
  14. Delgermaa L, Hayashi N, Dorjsuren D, Nomura T, le TT T, Murakami S (2004) Subcellular localization of RPB5-mediating protein and its putative functional partner. Mol Cell Biol 24(19):8556–8566CrossRefGoogle Scholar
  15. Djouder N, Metzler SC, Schmidt A, Wirbelauer C, Gstaiger M, Aebersold R et al (2007) S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 28(1):28–40CrossRefGoogle Scholar
  16. Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9(1):102–110CrossRefGoogle Scholar
  17. Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79(2):425–449CrossRefGoogle Scholar
  18. Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17(4):952–966CrossRefGoogle Scholar
  19. Gomes AL, Teijeiro A, Buren S, Tummala KS, Yilmaz M, Waisman A et al (2016) Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30(1):161–175CrossRefGoogle Scholar
  20. Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M et al (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302(5648):1208–1212CrossRefGoogle Scholar
  21. Gu J, Li X, Liang Y, Qiao L, Ran D, Lu Y et al (2013a) Upregulation of URI/RMP gene expression in cervical cancer by high-throughput tissue microarray analysis. Int J Clin Exp Pathol 6(4):669–677PubMedPubMedCentralGoogle Scholar
  22. Gu J, Liang Y, Qiao L, Li X, Lu Y, Zheng Q (2013b) Expression analysis of URI/RMP gene in endometrioid adenocarcinoma by tissue microarray immunohistochemistry. Int J Clin Exp Pathol 6(11):2396–2403PubMedPubMedCentralGoogle Scholar
  23. Gu J, Liang Y, Qiao L, Lu Y, Hu X, Luo D et al (2015) URI expression in cervical cancer cells is associated with higher invasion capacity and resistance to cisplatin. Am J Cancer Res 5(4):1353–1367PubMedPubMedCentralGoogle Scholar
  24. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  25. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ (2001) p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A 98(17):9666–9670CrossRefGoogle Scholar
  26. Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S et al (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39(6):839–850CrossRefGoogle Scholar
  27. Houry WA, Bertrand E, Coulombe B (2018) The PAQosome, an R2TP-based chaperone for quaternary structure formation. Trends Biochem Sci 43(1):4–9CrossRefGoogle Scholar
  28. Kakihara Y, Houry WA (2012) The R2TP complex: discovery and functions. Biochim Biophys Acta 1823(1):101–107CrossRefGoogle Scholar
  29. Kakihara Y, Makhnevych T, Zhao L, Tang W, Houry WA (2014) Nutritional status modulates box C/D snoRNP biogenesis by regulated subcellular relocalization of the R2TP complex. Genome Biol 15(7):404CrossRefGoogle Scholar
  30. Kamano Y, Saeki M, Egusa H, Kakihara Y, Houry WA, Yatani H et al (2013) PIH1D1 interacts with mTOR complex 1 and enhances ribosome RNA transcription. FEBS Lett 587(20):3303–3308CrossRefGoogle Scholar
  31. Klumpp S, Krieglstein J (2002) Serine/threonine protein phosphatases in apoptosis. Curr Opin Pharmacol 2(4):458–462CrossRefGoogle Scholar
  32. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V et al (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23(12):4207–4218CrossRefGoogle Scholar
  33. Marengo A, Rosso C, Bugianesi E (2016) Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 67:103–117CrossRefGoogle Scholar
  34. Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA et al (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21(23):6377–6386CrossRefGoogle Scholar
  35. McKeegan KS, Debieux CM, Boulon S, Bertrand E, Watkins NJ (2007) A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol Cell Biol 27(19):6782–6793CrossRefGoogle Scholar
  36. Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E et al (2012) Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5(217):ra24CrossRefGoogle Scholar
  37. Mita P, Savas JN, Djouder N, Yates JR 3rd, Ha S, Ruoff R et al (2011) Regulation of androgen receptor-mediated transcription by RPB5 binding protein URI/RMP. Mol Cell Biol 31(17):3639–3652CrossRefGoogle Scholar
  38. Mueller CL, Jaehning JA (2002) Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol Cell Biol 22(7):1971–1980CrossRefGoogle Scholar
  39. Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3):709–719CrossRefGoogle Scholar
  40. Noske A, Henricksen LA, LaFleur B, Zimmermann AK, Tubbs A, Singh S et al (2015) Characterization of the 19q12 amplification including CCNE1 and URI in different epithelial ovarian cancer subtypes. Exp Mol Pathol 98(1):47–54CrossRefGoogle Scholar
  41. Nwachukwu JC, Mita P, Ruoff R, Ha S, Wang Q, Huang SJ et al (2009) Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells. Cancer Res 69(7):3140–3147CrossRefGoogle Scholar
  42. Palancade B, Bensaude O (2003) Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem 270(19):3859–3870CrossRefGoogle Scholar
  43. Parusel CT, Kritikou EA, Hengartner MO, Krek W, Gotta M (2006) URI-1 is required for DNA stability in C. elegans. Development 133(4):621–629CrossRefGoogle Scholar
  44. Porter SE, Washburn TM, Chang M, Jaehning JA (2002) The yeast pafl-rNA polymerase II complex is required for full expression of a subset of cell cycle-regulated genes. Eukaryot Cell 1(5):830–842CrossRefGoogle Scholar
  45. Renard CA, Fourel G, Bralet MP, Degott C, De La Coste A, Perret C et al (2000) Hepatocellular carcinoma in WHV/N-myc2 transgenic mice: oncogenic mutations of beta-catenin and synergistic effect of p53 null alleles. Oncogene 19(22):2678–2686CrossRefGoogle Scholar
  46. Rivera-Calzada A, Pal M, Munoz-Hernandez H, Luque-Ortega JR, Gil-Carton D, Degliesposti G et al (2017) The structure of the R2TP complex defines a platform for recruiting diverse client proteins to the HSP90 molecular chaperone system. Structure 25(7):1145–1152 e4CrossRefGoogle Scholar
  47. Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ, Shanmugam KS, Copeland TD, Guszczynski T et al (2005) The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol 25(2):612–620CrossRefGoogle Scholar
  48. Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E et al (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 18(1):75–84CrossRefGoogle Scholar
  49. Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103(4):621–632CrossRefGoogle Scholar
  50. Taneja SS, Ha S, Swenson NK, Torra IP, Rome S, Walden PD et al (2004) ART-27, an androgen receptor coactivator regulated in prostate development and cancer. J Biol Chem 7Google Scholar
  51. Theurillat JP, Metzler SC, Henzi N, Djouder N, Helbling M, Zimmermann AK et al (2011) URI is an oncogene amplified in ovarian cancer cells and is required for their survival. Cancer Cell 19(3):317–332CrossRefGoogle Scholar
  52. Tummala KS, Gomes AL, Yilmaz M, Grana O, Bakiri L, Ruppen I et al (2014) Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26(6):826–839CrossRefGoogle Scholar
  53. Tummala KS, Brandt M, Teijeiro A, Grana O, Schwabe RF, Perna C et al (2017) Hepatocellular carcinomas originate predominantly from hepatocytes and benign lesions from hepatic progenitor cells. Cell Rep 19(3):584–600CrossRefGoogle Scholar
  54. Umemura A, Park EJ, Taniguchi K, Lee JH, Shalapour S, Valasek MA et al (2014) Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition. Cell Metab 4Google Scholar
  55. Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL et al (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93(5):863–873CrossRefGoogle Scholar
  56. Wang Y, Garabedian MJ, Logan SK (2015) URI1 amplification in uterine carcinosarcoma associates with chemo-resistance and poor prognosis. Am J Cancer Res 5(7):2320–2329PubMedPubMedCentralGoogle Scholar
  57. Wells L, Vosseller K, Hart GW (2003) A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell Mol Life Sci 60(2):222–228CrossRefGoogle Scholar
  58. Xu Z, Bian H, Zhang F, Mi R, Wang Q, Lu Y et al (2017) URI promotes the migration and invasion of human cervical cancer cells potentially via upregulation of vimentin expression. Am J Transl Res 9(6):3037–3047PubMedPubMedCentralGoogle Scholar
  59. Yart A, Gstaiger M, Wirbelauer C, Pecnik M, Anastasiou D, Hess D et al (2005) The HRPT2 tumor suppressor gene product parafibromin associates with human PAF1 and RNA polymerase II. Mol Cell Biol 25(12):5052–5060CrossRefGoogle Scholar
  60. Zhai N, Zhao ZL, Cheng MB, Di YW, Yan HX, Cao CY et al (2012) Human PIH1 associates with histone H4 to mediate the glucose-dependent enhancement of pre-rRNA synthesis. J Mol Cell Biol 4(4):231–241CrossRefGoogle Scholar
  61. Zhang X, Zhang H, Ye L (2006) Effects of hepatitis B virus X protein on the development of liver cancer. J Lab Clin Med 147(2):58–66CrossRefGoogle Scholar
  62. Zhang J, Pan YF, Ding ZW, Yang GZ, Tan YX, Yang C et al (2015) RMP promotes venous metastases of hepatocellular carcinoma through promoting IL-6 transcription. Oncogene 34(12):1575–1583CrossRefGoogle Scholar
  63. Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715–727CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Almudena Chaves-Pérez
    • 1
  • Sebastian Thompson
    • 1
  • Nabil Djouder
    • 1
    Email author
  1. 1.Cancer Cell Biology Programme, Growth factors, Nutrients and Cancer GroupCentro Nacional Investigaciones Oncológicas, CNIOMadridSpain

Personalised recommendations