Skip to main content

Advances on the Structure of the R2TP/Prefoldin-like Complex

  • Chapter
  • First Online:
Prefoldins: the new chaperones

Abstract

Cellular stability, assembly and activation of a growing list of macromolecular complexes require the action of HSP90 working in concert with the R2TP/Prefoldin-like (R2TP/PFDL) co-chaperone. RNA polymerase II, snoRNPs and complexes of PI3-kinase-like kinases, a family that includes the ATM, ATR, DNA-PKcs, TRAPP, SMG1 and mTOR proteins, are among the clients of the HSP90-R2TP system. Evidence links the R2TP/PFDL pathway with cancer, most likely because of the essential role in pathways commonly deregulated in cancer. R2TP forms the core of the co-cochaperone and orchestrates the recruitment of HSP90 and clients, whereas prefoldin and additional prefoldin-like proteins, including URI, associate with R2TP, but their function is still unclear. The mechanism by which R2TP/PFLD facilitates assembly and activation of such a variety of macromolecular complexes is poorly understood. Recent efforts in the structural characterization of R2TP have started to provide some mechanistic insights. We summarize recent structural findings, particularly how cryo-electron microscopy (cryo-EM) is contributing to our understanding of the architecture of the R2TP core complex. Structural differences discovered between yeast and human R2TP reveal unanticipated complexities of the metazoan R2TP complex, and opens new and interesting questions about how R2TP/PFLD works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayala R, Willhoft O, Aramayo RJ, Wilkinson M, McCormack EA, Ocloo L et al (2018) Structure and regulation of the human INO80-nucleosome complex. Nature 556(7701):391–395

    Article  CAS  Google Scholar 

  • Back R, Dominguez C, Rothe B, Bobo C, Beaufils C, Morera S et al (2013) High-resolution structural analysis shows how Tah1 tethers Hsp90 to the R2TP complex. Structure 21(10):1834–1847

    Article  CAS  Google Scholar 

  • Boulon S, Pradet-Balade B, Verheggen C, Molle D, Boireau S, Georgieva M et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912–924

    Article  CAS  Google Scholar 

  • Buren S, Gomes AL, Teijeiro A, Fawal MA, Yilmaz M, Tummala KS et al (2016) Regulation of OGT by URI in Response to Glucose Confers c-MYC-Dependent Survival Mechanisms. Cancer Cell 30(2):290–307

    Article  CAS  Google Scholar 

  • Cheung KL, Huen J, Houry WA, Ortega J (2010) Comparison of the multiple oligomeric structures observed for the Rvb1 and Rvb2 proteins. Biochem Cell Biol 88(1):77–88

    Article  CAS  Google Scholar 

  • Cloutier P, Al-Khoury R, Lavallee-Adam M, Faubert D, Jiang H, Poitras C et al (2009) High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. Methods 48(4):381–386

    Article  CAS  Google Scholar 

  • Cloutier P, Poitras C, Durand M, Hekmat O, Fiola-Masson E, Bouchard A et al (2017) R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 8:15615

    Article  CAS  Google Scholar 

  • Eckert K, Saliou JM, Monlezun L, Vigouroux A, Atmane N, Caillat C et al (2010) The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J Biol Chem 285(41):31304–31312

    Article  CAS  Google Scholar 

  • Eustermann S, Schall K, Kostrewa D, Lakomek K, Strauss M, Moldt M et al (2018) Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556(7701):386–390

    Article  CAS  Google Scholar 

  • Ewens CA, Su M, Zhao L, Nano N, Houry WA, Southworth DR (2016) Architecture and Nucleotide-Dependent Conformational Changes of the Rvb1-Rvb2 AAA+ Complex Revealed by Cryoelectron Microscopy. Structure 24(5):657–666

    Article  CAS  Google Scholar 

  • Feng SW, Chen Y, Tsai WC, Chiou HC, Wu ST, Huang LC et al (2016) Overexpression of TELO2 decreases survival in human high-grade gliomas. Oncotarget 7(29):46056–46066

    Article  Google Scholar 

  • Gorynia S, Bandeiras TM, Pinho FG, McVey CE, Vonrhein C, Round A et al (2011) Structural and functional insights into a dodecameric molecular machine – the RuvBL1/RuvBL2 complex. J Struct Biol 176(3):279–291

    Article  CAS  Google Scholar 

  • Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S et al (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39(6):839–850

    Article  CAS  Google Scholar 

  • Horejsi Z, Stach L, Flower TG, Joshi D, Flynn H, Skehel JM et al (2014) Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep 7(1):19–26

    Article  CAS  Google Scholar 

  • Houry WA, Bertrand E, Coulombe B (2018) The PAQosome, an R2TP-Based Chaperone for Quaternary Structure Formation. Trends Biochem Sci 43(1):4–9

    Article  CAS  Google Scholar 

  • Huber O, Menard L, Haurie V, Nicou A, Taras D, Rosenbaum J (2008) Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res 68(17):6873–6876

    Article  CAS  Google Scholar 

  • Imseng S, Aylett CH, Maier T (2018) Architecture and activation of phosphatidylinositol 3-kinase related kinases. Curr Opin Struct Biol 49:177–189

    Article  CAS  Google Scholar 

  • Itsuki Y, Saeki M, Nakahara H, Egusa H, Irie Y, Terao Y et al (2008) Molecular cloning of novel Monad binding protein containing tetratricopeptide repeat domains. FEBS Lett 582(16):2365–2370

    Article  CAS  Google Scholar 

  • Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C et al (2007) Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 27(2):262–274

    Article  CAS  Google Scholar 

  • Jimenez B, Ugwu F, Zhao R, Orti L, Makhnevych T, Pineda-Lucena A et al (2012) Structure of minimal tetratricopeptide repeat domain protein Tah1 reveals mechanism of its interaction with Pih1 and Hsp90. J Biol Chem 287(8):5698–5709

    Article  CAS  Google Scholar 

  • Kakihara Y, Houry WA (2012) The R2TP complex: discovery and functions. Biochim Biophys Acta 1823(1):101–107

    Article  CAS  Google Scholar 

  • Kakihara Y, Saeki M (2014) The R2TP chaperone complex: its involvement in snoRNP assembly and tumorigenesis. Biomol Concepts 5(6):513–520

    Article  CAS  Google Scholar 

  • Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW et al (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49(1):172–185

    Article  CAS  Google Scholar 

  • Lakomek K, Stoehr G, Tosi A, Schmailzl M, Hopfner KP (2015) Structural basis for dodecameric assembly states and conformational plasticity of the full-length AAA+ ATPases Rvb1 . Rvb2. Structure 23(3):483–495

    Article  CAS  Google Scholar 

  • Lopez-Perrote A, Munoz-Hernandez H, Gil D, Llorca O (2012) Conformational transitions regulate the exposure of a DNA-binding domain in the RuvBL1-RuvBL2 complex. Nucleic Acids Res 40(21):11086–11099

    Article  CAS  Google Scholar 

  • Machado-Pinilla R, Liger D, Leulliot N, Meier UT (2012) Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs. RNA 18(10):1833–1845

    Article  CAS  Google Scholar 

  • Martino F, Pal M, Munoz-Hernandez H, Rodriguez CF, Nunez-Ramirez R, Gil-Carton D et al (2018) RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex. Nat Commun 9(1):1501

    Article  Google Scholar 

  • Maurizy C, Quinternet M, Abel Y, Verheggen C, Santo PE, Bourguet M et al (2018) The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun 9(1):2093

    Article  Google Scholar 

  • Millson SH, Vaughan CK, Zhai C, Ali MM, Panaretou B, Piper PW et al (2008) Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochem J 413(2):261–268

    Article  CAS  Google Scholar 

  • Mita P, Savas JN, Ha S, Djouder N, Yates JR 3rd, Logan SK (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One 8(5):e63879

    Article  CAS  Google Scholar 

  • Morgan RM, Pal M, Roe SM, Pearl LH, Prodromou C (2015) Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes. Acta Crystallogr D Biol Crystallogr 71(Pt 5):1197–1206

    Article  CAS  Google Scholar 

  • Olcese C, Patel MP, Shoemark A, Kiviluoto S, Legendre M, Williams HJ et al (2017) X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 8:14279

    Article  CAS  Google Scholar 

  • Pal M, Morgan M, Phelps SE, Roe SM, Parry-Morris S, Downs JA et al (2014) Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22(6):805–818

    Article  CAS  Google Scholar 

  • Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 1823(3):614–623

    Article  CAS  Google Scholar 

  • Rivera-Calzada A, Pal M, Munoz-Hernandez H, Luque-Ortega JR, Gil-Carton D, Degliesposti G et al (2017) The structure of the R2TP complex defines a platform for recruiting diverse client proteins to the HSP90 molecular chaperone system. Structure 25(7):1145–1152 e4

    Article  CAS  Google Scholar 

  • Saeki M, Egusa H, Kamano Y, Kakihara Y, Houry WA, Yatani H et al (2013) Exosome-bound WD repeat protein Monad inhibits breast cancer cell invasion by degrading amphiregulin mRNA. PLoS One 8(7):e67326

    Article  CAS  Google Scholar 

  • Sang Y, Chen MY, Luo D, Zhang RH, Wang L, Li M et al (2015) TEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma. Oncotarget 6(30):29240–29253

    Article  Google Scholar 

  • Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24(18):2019–2030

    Article  CAS  Google Scholar 

  • Tian S, Yu G, He H, Zhao Y, Liu P, Marshall AG et al (2017) Pih1p-Tah1p puts a lid on hexameric AAA+ ATPases Rvb1/2p. Structure 25(10):1519–1529 e4

    Article  CAS  Google Scholar 

  • Torreira E, Jha S, Lopez-Blanco JR, Arias-Palomo E, Chacon P, Canas C et al (2008) Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes. Structure 16(10):1511–1520

    Article  CAS  Google Scholar 

  • Tummala KS, Gomes AL, Yilmaz M, Grana O, Bakiri L, Ruppen I et al (2014) Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26(6):826–839

    Article  CAS  Google Scholar 

  • Vaughan CK (2014) Hsp90 picks PIKKs via R2TP and Tel2. Structure 22(6):799–800

    Article  CAS  Google Scholar 

  • von Morgen P, Burdova K, Flower TG, O’Reilly NJ, Boulton SJ, Smerdon SJ et al (2017) MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene 36(34):4943–4950

    Article  Google Scholar 

  • Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M et al (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 180(3):563–578

    Article  CAS  Google Scholar 

  • Zur Lage P, Stefanopoulou P, Styczynska-Soczka K, Quinn N, Mali G, von Kriegsheim A et al (2018) Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. J Cell Biol 217:2583–2598

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project EXCELENCIA SAF2017-82632-P, MCIU-AEI and cofounded by the European Regional Development fund (ERDF-EU) to OL and BES-2015-071348 to CFR. We thank Lidia Cerdán (CNB-CSIC) for help in Fig. 5.4.

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Llorca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muñoz-Hernández, H., Pal, M., Rodríguez, C.F., Prodromou, C., Pearl, L.H., Llorca, O. (2018). Advances on the Structure of the R2TP/Prefoldin-like Complex. In: Djouder, N. (eds) Prefoldins: the new chaperones. Advances in Experimental Medicine and Biology, vol 1106. Springer, Cham. https://doi.org/10.1007/978-3-030-00737-9_5

Download citation

Publish with us

Policies and ethics