Advertisement

The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex

  • Jeffrey Lynham
  • Walid A. HouryEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1106)

Abstract

The PAQosome (Particle for Arrangement of Quaternary structure) is a large multisubunit chaperone complex that is essential for the assembly and stabilization of other macromolecular complexes. It also interacts with several chaperones including Hsp90, Hsp70, and CCT. The PAQosome is comprised of the R2TP complex, the URI1 prefoldin complex (also known as the non-canonical prefoldin-like complex), the RNA polymerase subunit RPB5, and the WD40 repeat protein WDR92. The R2TP complex is conserved among eukaryotes and has been comprehensively studied over the last 13 years. The R2TP complex is known for its involvement in the assembly and stabilization of L7Ae ribonucleoproteins, U5 small nuclear ribonucleoprotein, RNA polymerase II, phosphatidylinositol-3-kinase-related proteins (PIKKs), and the tuberous sclerosis complex (TSC1-TSC2). By contrast, the URI1 prefoldin complex has evolved exclusively in higher metazoans. Although the URI1 prefoldin complex was initially reported more than 15 years ago, little is known about its function and its role within the PAQosome. Given that URI1 is overexpressed in many types of cancer, it is surprising that the URI1 prefoldin complex has been overlooked. This chapter provides an update on the recent progress uncovering the physiological roles of each PAQosome subunit and provides an overview of the potential functions of the URI1 prefoldin complex.

Keywords

Molecular chaperones R2TP URI1 PAQosome RNA polymerase assembly Non-canonical prefoldin complex Quaternary structure snoRNP biogenesis PIKK stabilization U5 snRNP TSC 

Notes

Acknowledgements

We thank members of the Houry group for careful reading of the manuscript. This work was funded by the Canadian Institutes of Health Research grant MOP-93778 to WAH.

References

  1. Abe A et al (2013) Prefoldin plays a role as a clearance factor in preventing proteasome inhibitor-induced protein aggregation. J Biol Chem 288:27764–27776.  https://doi.org/10.1074/jbc.M113.476358 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Acker J, de Graaff M, Cheynel I, Khazak V, Kedinger C, Vigneron M (1997) Interactions between the human RNA polymerase II subunits. J Biol Chem 272:16815–16821.  https://doi.org/10.1074/jbc.272.27.16815 CrossRefPubMedGoogle Scholar
  3. Ahmad M, Afrin F, Tuteja R (2013) Identification of R2TP complex of Leishmania donovani and Plasmodium falciparum using genome wide in-silico analysis. Commun Integr Biol 6:e26005.  https://doi.org/10.4161/cib.26005 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ali MM et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017.  https://doi.org/10.1038/nature04716 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Al-Khalili L et al (2014) Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes. Am J Phys Cell Phys 307:C774–C787.  https://doi.org/10.1152/ajpcell.00110.2014 CrossRefGoogle Scholar
  6. Allmang C, Carbon P, Krol A (2002) The SBP2 and 15.5 kD/Snu13p proteins share the same RNA binding domain: identification of SBP2 amino acids important to SECIS RNA binding. RNA 8:1308–1318CrossRefGoogle Scholar
  7. Aramayo RJ, Willhoft O, Ayala R, Bythell-Douglas R, Wigley DB, Zhang X (2018) Cryo-EM structures of the human INO80 chromatin-remodeling complex. Nat Struct Mol Biol 25:37–44.  https://doi.org/10.1038/s41594-017-0003-7 CrossRefPubMedGoogle Scholar
  8. Armache KJ, Mitterweger S, Meinhart A, Cramer P (2005) Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J Biol Chem 280:7131–7134.  https://doi.org/10.1074/jbc.M413038200 CrossRefPubMedGoogle Scholar
  9. Ayala R et al (2018) Structure and regulation of the human INO80-nucleosome complex. Nature 556:391–395.  https://doi.org/10.1038/s41586-018-0021-6 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Back R et al (2013) High-resolution structural analysis shows how Tah1 tethers Hsp90 to the R2TP complex. Structure 21:1834–1847.  https://doi.org/10.1016/j.str.2013.07.024 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bauer A et al (2000) Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J 19:6121–6130.  https://doi.org/10.1093/emboj/19.22.6121 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Benbahouche Nel H et al (2014) Drosophila Spag is the homolog of RNA polymerase II-associated protein 3 (RPAP3) and recruits the heat shock proteins 70 and 90 (Hsp70 and Hsp90) during the assembly of cellular machineries. J Biol Chem 289:6236–6247.  https://doi.org/10.1074/jbc.M113.499608 CrossRefPubMedGoogle Scholar
  13. Benvenuto G et al (2000) The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene 19:6306–6316.  https://doi.org/10.1038/sj.onc.1204009 CrossRefPubMedGoogle Scholar
  14. Berry MJ, Banu L, Chen YY, Mandel SJ, Kieffer JD, Harney JW, Larsen PR (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3’ untranslated region. Nature 353:273–276.  https://doi.org/10.1038/353273a0 CrossRefPubMedGoogle Scholar
  15. Bizarro J et al (2014) Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. J Cell Biol 207:463–480.  https://doi.org/10.1083/jcb.201404160 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bizarro J et al (2015) NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Res 43:8973–8989.  https://doi.org/10.1093/nar/gkv809 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boon KL, Grainger RJ, Ehsani P, Barrass JD, Auchynnikava T, Inglehearn CF, Beggs JD (2007) prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nat Struct Mol Biol 14:1077–1083.  https://doi.org/10.1038/nsmb1303 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Boulon S et al (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 180:579–595.  https://doi.org/10.1083/jcb.200708110 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Boulon S et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39:912–924.  https://doi.org/10.1016/j.molcel.2010.08.023 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Broer L et al (2011) Association of HSP70 and its co-chaperones with Alzheimer’s disease. J Alzheimers Dis 25:93–102.  https://doi.org/10.3233/JAD-2011-101560 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Buis J et al (2008) Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 135:85–96.  https://doi.org/10.1016/j.cell.2008.08.015 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Buren S et al (2016) Regulation of OGT by URI in Response to Glucose Confers c-MYC-Dependent Survival Mechanisms. Cancer Cell 30:290–307.  https://doi.org/10.1016/j.ccell.2016.06.023 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bushnell DA, Kornberg RD (2003) Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription. Proc Natl Acad Sci U S A 100:6969–6973.  https://doi.org/10.1073/pnas.1130601100 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bushnell DA, Cramer P, Kornberg RD (2002) Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. Proc Natl Acad Sci U S A 99:1218–1222.  https://doi.org/10.1073/pnas.251664698 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cannavo E, Cejka P (2014) Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514:122–125.  https://doi.org/10.1038/nature13771 CrossRefPubMedGoogle Scholar
  26. Cao S et al (2008) Subunit 1 of the Prefoldin chaperone complex is required for lymphocyte development and function. J Immunol 181:476–484.  https://doi.org/10.4049/jimmunol.181.1.476 CrossRefPubMedGoogle Scholar
  27. Carter DR, Buckle AD, Tanaka K, Perdomo J, Chong BH (2014) Art27 interacts with GATA4, FOG2 and NKX2.5 and is a novel co-repressor of cardiac genes. PLoS One 9:e95253.  https://doi.org/10.1371/journal.pone.0095253 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chang LS et al (2012) Epstein-Barr virus BGLF4 kinase downregulates NF-kappaB transactivation through phosphorylation of coactivator UXT. J Virol 86:12176–12186.  https://doi.org/10.1128/JVI.01918-12 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chang DC et al (2015) Use of a High-Density Protein Microarray to Identify Autoantibodies in Subjects with Type 2 Diabetes Mellitus and an HLA Background Associated with Reduced Insulin Secretion. PLoS One 10:e0143551.  https://doi.org/10.1371/journal.pone.0143551 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chang DC, Piaggi P, Hanson RL, Knowler WC, Bogardus C, Krakoff J (2017) Autoantibodies against PFDN2 are associated with an increased risk of type 2 diabetes: A case-control study. Diabetes Metab Res Rev 33.  https://doi.org/10.1002/dmrr.2922 CrossRefGoogle Scholar
  31. Chen Y et al (2009) A novel role for DYX1C1, a chaperone protein for both Hsp70 and Hsp90, in breast cancer. J Cancer Res Clin Oncol 135:1265–1276.  https://doi.org/10.1007/s00432-009-0568-6 CrossRefPubMedGoogle Scholar
  32. Chen S, Chen K, Zhang Q, Cheng H, Zhou R (2013) Regulation of the transcriptional activation of the androgen receptor by the UXT-binding protein VHL. Biochem J 456:55–66.  https://doi.org/10.1042/BJ20121711 CrossRefPubMedGoogle Scholar
  33. Chen D, Tao X, Zhou L, Sun F, Sun M, Fang X (2017) Spaghetti, a homolog of human RPAP3 (RNA polymerase II-associated protein 3), determines the fate of germline stem cells in Drosophila ovary. Cell Biol Int 42(7):769–780.  https://doi.org/10.1002/cbin.10900 CrossRefPubMedGoogle Scholar
  34. Cheong JH, Yi MK, Lin Y, Murakami S (1995) Human Rpb5, a Subunit Shared by Eukaryotic Nuclear-Rna Polymerases, Binds Human Hepatitis-B Virus X-Protein and May Play a Role in X-Transactivation. EMBO J 14:143–150CrossRefGoogle Scholar
  35. Cheung KL, Huen J, Kakihara Y, Houry WA, Ortega J (2010) Alternative oligomeric states of the yeast Rvb1/Rvb2 complex induced by histidine tags. J Mol Biol 404:478–492.  https://doi.org/10.1016/j.jmb.2010.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chintalapudi SR, Morales-Tirado V, Williams RW, Jablonski MM (2014) QTL rich region of Chr1 specific gene, Pfdn2, regulates Sncg expression in mouse RGC. Invest Ophthalmol Vis Sci 55:6405–6405Google Scholar
  37. Chintalapudi SR, Morales-Tirado VM, Williams RW, Jablonski MM (2016) Multipronged approach to identify and validate a novel upstream regulator of Sncg in mouse retinal ganglion cells. FEBS J 283:678–693.  https://doi.org/10.1111/febs.13620 CrossRefPubMedGoogle Scholar
  38. Chou CC, Wang AH (2015) Structural D/E-rich repeats play multiple roles especially in gene regulation through DNA/RNA mimicry. Mol BioSyst 11:2144–2151.  https://doi.org/10.1039/c5mb00206k CrossRefPubMedGoogle Scholar
  39. Chubb D et al (2016) Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat Commun 7:11883.  https://doi.org/10.1038/ncomms11883 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Claudius AK, Romani P, Lamkemeyer T, Jindra M, Uhlirova M (2014) Unexpected role of the steroid-deficiency protein ecdysoneless in pre-mRNA splicing. PLoS Genet 10:e1004287.  https://doi.org/10.1371/journal.pgen.1004287 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Cloutier P et al (2009) High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. Methods 48:381–386.  https://doi.org/10.1016/j.ymeth.2009.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Cloutier P et al (2017) R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 8:15615.  https://doi.org/10.1038/ncomms15615 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM (2000) A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J 19:306–314.  https://doi.org/10.1093/emboj/19.2.306 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Cramer P et al (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science (New York, NY) 288:640–649CrossRefGoogle Scholar
  45. Darzacq X, Kittur N, Roy S, Shav-Tal Y, Singer RH, Meier UT (2006) Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J Cell Biol 173:207–218.  https://doi.org/10.1083/jcb.200601105 CrossRefPubMedPubMedCentralGoogle Scholar
  46. David-Morrison G et al (2016) WAC Regulates mTOR Activity by Acting as an Adaptor for the TTT and Pontin/Reptin Complexes. Dev Cell 36:139–151.  https://doi.org/10.1016/j.devcel.2015.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Dehghan-Nayeri N, Rezaei-Tavirani M, Omrani MD, Gharehbaghian A, Goudarzi Pour K, Eshghi P (2017) Identification of potential predictive markers of dexamethasone resistance in childhood acute lymphoblastic leukemia. J Cell Commun Signal 11:137–145.  https://doi.org/10.1007/s12079-016-0357-3 CrossRefPubMedGoogle Scholar
  48. Delgermaa L, Hayashi N, Dorjsuren D, Nomura T, le TT T, Murakami S (2004) Subcellular localization of RPB5-mediating protein and its putative functional partner. Mol Cell Biol 24:8556–8566.  https://doi.org/10.1128/MCB.24.19.8556-8566.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Deplazes A, Mockli N, Luke B, Auerbach D, Peter M (2009) Yeast Uri1p promotes translation initiation and may provide a link to cotranslational quality control. EMBO J 28:1429–1441.  https://doi.org/10.1038/emboj.2009.98 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Dibble CC et al (2012) TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47:535–546.  https://doi.org/10.1016/j.molcel.2012.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Djouder N et al (2007) S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 28:28–40.  https://doi.org/10.1016/j.molcel.2007.08.010 CrossRefGoogle Scholar
  52. Dong F et al (2014) Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm. J Cell Biol 204:203–213.  https://doi.org/10.1083/jcb.201304076 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Dorjsuren D, Lin Y, Wei W, Yamashita T, Nomura T, Hayashi N, Murakami S (1998) RMP, a novel RNA polymerase II subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol Cell Biol 18:7546–7555CrossRefGoogle Scholar
  54. Ducat D, Kawaguchi S, Liu H, Yates JR 3rd, Zheng Y (2008) Regulation of microtubule assembly and organization in mitosis by the AAA+ ATPase Pontin. Mol Biol Cell 19:3097–3110.  https://doi.org/10.1091/mbc.E07-11-1202 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Eckert K et al (2010) The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J Biol Chem 285:31304–31312.  https://doi.org/10.1074/jbc.M110.138263 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Enunlu I, Ozansoy M, Basak AN (2011) Alfa-class prefoldin protein UXT is a novel interacting partner of Amyotrophic Lateral Sclerosis 2 (Als2) protein. Biochem Biophys Res Commun 413:471–475.  https://doi.org/10.1016/j.bbrc.2011.08.121 CrossRefPubMedGoogle Scholar
  57. Etard C, Gradl D, Kunz M, Eilers M, Wedlich D (2005) Pontin and Reptin regulate cell proliferation in early Xenopus embryos in collaboration with c-Myc and Miz-1. Mech Dev 122:545–556.  https://doi.org/10.1016/j.mod.2004.11.010 CrossRefPubMedGoogle Scholar
  58. Ewens CA, Su M, Zhao L, Nano N, Houry WA, Southworth DR (2016) Architecture and Nucleotide-Dependent Conformational Changes of the Rvb1-Rvb2 AAA+ Complex Revealed by cryoelectron microscopy. Structure 24:657–666.  https://doi.org/10.1016/j.str.2016.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A (2000) Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J 19:4796–4805.  https://doi.org/10.1093/emboj/19.17.4796 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Fan JL et al (2014) URI regulates tumorigenicity and chemotherapeutic resistance of multiple myeloma by modulating IL-6 transcription. Cell Death Dis 5:e1126.  https://doi.org/10.1038/cddis.2014.93 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Fernandez-Saiz V et al (2013) SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nat Cell Biol 15:72–81.  https://doi.org/10.1038/ncb2651 CrossRefPubMedGoogle Scholar
  62. Filali H et al (2014) Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie. BMC Genomics 15:59.  https://doi.org/10.1186/1471-2164-15-59 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Forget D, Lacombe AA, Cloutier P, Lavallee-Adam M, Blanchette M, Coulombe B (2013) Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2. Nucleic Acids Res 41:6881–6891.  https://doi.org/10.1093/nar/gkt455 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060CrossRefGoogle Scholar
  65. Gao BB, Phipps JA, Bursell D, Clermont AC, Feener EP (2009) Angiotensin AT1 receptor antagonism ameliorates murine retinal proteome changes induced by diabetes. J Proteome Res 8:5541–5549.  https://doi.org/10.1021/pr9006415 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gartner W et al (2003) The ATP-dependent helicase RUVBL1/TIP49a associates with tubulin during mitosis. Cell Motil Cytoskeleton 56:79–93.  https://doi.org/10.1002/cm.10136 CrossRefPubMedGoogle Scholar
  67. Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17:952–966.  https://doi.org/10.1093/emboj/17.4.952 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Giot L et al (2003) A protein interaction map of Drosophila melanogaster. Science (New York, NY) 302:1727–1736.  https://doi.org/10.1126/science.1090289 CrossRefGoogle Scholar
  69. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science (New York, NY) 292:1876–1882.  https://doi.org/10.1126/science.1059495 CrossRefGoogle Scholar
  70. Gomes AL et al (2016) Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30:161–175.  https://doi.org/10.1016/j.ccell.2016.05.020 CrossRefPubMedGoogle Scholar
  71. Gonzales FA, Zanchin NI, Luz JS, Oliveira CC (2005) Characterization of Saccharomyces cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in Pre-rRNA processing. J Mol Biol 346:437–455.  https://doi.org/10.1016/j.jmb.2004.11.071 CrossRefPubMedGoogle Scholar
  72. Gorynia S et al (2011) Structural and functional insights into a dodecameric molecular machine - the RuvBL1/RuvBL2 complex. J Struct Biol 176:279–291.  https://doi.org/10.1016/j.jsb.2011.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Gospodinov A, Tsaneva I, Anachkova B (2009) RAD51 foci formation in response to DNA damage is modulated by TIP49. Int J Biochem Cell Biol 41:925–933.  https://doi.org/10.1016/j.biocel.2008.09.004 CrossRefPubMedGoogle Scholar
  74. Goto GH, Ogi H, Biswas H, Ghosh A, Tanaka S, Sugimoto K (2017) Two separate pathways regulate protein stability of ATM/ATR-related protein kinases Mec1 and Tel1 in budding yeast. PLoS Genet 13:e1006873.  https://doi.org/10.1371/journal.pgen.1006873 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Gottschalk A, Kastner B, Luhrmann R, Fabrizio P (2001) The yeast U5 snRNP coisolated with the U1 snRNP has an unexpected protein composition and includes the splicing factor Aar2p. RNA 7:1554–1565PubMedPubMedCentralGoogle Scholar
  76. Grankowski N, Boldyreff B, Issinger OG (1991) Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. Eur J Biochem 198:25–30CrossRefGoogle Scholar
  77. Gribling-Burrer AS et al (2017) SECIS-binding protein 2 interacts with the SMN complex and the methylosome for selenoprotein mRNP assembly and translation. Nucleic Acids Res 45:5399–5413.  https://doi.org/10.1093/nar/gkx031 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Gribun A, Cheung KL, Huen J, Ortega J, Houry WA (2008) Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J Mol Biol 376:1320–1333.  https://doi.org/10.1016/j.jmb.2007.12.049 CrossRefPubMedGoogle Scholar
  79. Grozdanov PN, Roy S, Kittur N, Meier UT (2009) SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 15:1188–1197.  https://doi.org/10.1261/rna.1532109 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Gstaiger M et al (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science (New York, NY) 302:1208–1212.  https://doi.org/10.1126/science.1088401 CrossRefGoogle Scholar
  81. Gu J, Liang Y, Qiao L, Li X, Li X, Lu Y, Zheng Q (2013) Expression analysis of URI/RMP gene in endometrioid adenocarcinoma by tissue microarray immunohistochemistry. Int J Clin Exp Pathol 6:2396–2403PubMedPubMedCentralGoogle Scholar
  82. Gu J et al (2015) URI expression in cervical cancer cells is associated with higher invasion capacity and resistance to cisplatin. Am J Cancer Res 5:1353–1367PubMedPubMedCentralGoogle Scholar
  83. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ (2001) p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A 98:9666–9670.  https://doi.org/10.1073/pnas.171301998 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Hartill VL et al (2018) DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport. Hum Mol Genet 27:529–545.  https://doi.org/10.1093/hmg/ddx422 CrossRefPubMedGoogle Scholar
  85. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332.  https://doi.org/10.1038/nature10317 CrossRefPubMedGoogle Scholar
  86. Heikkinen K et al (2006) RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis 27:1593–1599.  https://doi.org/10.1093/carcin/bgi360 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Hoffman KS, Duennwald ML, Karagiannis J, Genereaux J, McCarton AS, Brandl CJ (2016) Saccharomyces cerevisiae Tti2 Regulates PIKK Proteins and Stress Response. G3 (Bethesda) 6:1649–1659.  https://doi.org/10.1534/g3.116.029520 CrossRefGoogle Scholar
  88. Horejsi Z et al (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39:839–850.  https://doi.org/10.1016/j.molcel.2010.08.037 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Horejsi Z et al (2014) Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep 7:19–26.  https://doi.org/10.1016/j.celrep.2014.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Houry WA, Bertrand E, Coulombe B (2018) The PAQosome, an R2TP-Based Chaperone for Quaternary Structure Formation Trends. Biochem Sci 43:4–9.  https://doi.org/10.1016/j.tibs.2017.11.001 CrossRefGoogle Scholar
  91. Hu X et al (2016) URI promotes gastric cancer cell motility, survival, and resistance to adriamycin in vitro. Am J Cancer Res 6:1420–1430PubMedPubMedCentralGoogle Scholar
  92. Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190.  https://doi.org/10.1042/BJ20080281 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Huang Y, Chen L, Zhou Y, Liu H, Yang J, Liu Z, Wang C (2011) UXT-V1 protects cells against TNF-induced apoptosis through modulating complex II formation. Mol Biol Cell 22:1389–1397.  https://doi.org/10.1091/mbc.E10-10-0827 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Huang Y, Liu H, Ge R, Zhou Y, Lou X, Wang C (2012) UXT-V1 facilitates the formation of MAVS antiviral signalosome on mitochondria. J Immunol 188:358–366.  https://doi.org/10.4049/jimmunol.1102079 CrossRefPubMedGoogle Scholar
  95. Hurov KE, Cotta-Ramusino C, Elledge SJ (2010) A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev 24:1939–1950.  https://doi.org/10.1101/gad.1934210 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Ikura T et al (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473CrossRefGoogle Scholar
  97. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657.  https://doi.org/10.1038/ncb839 CrossRefPubMedGoogle Scholar
  98. Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829–1834.  https://doi.org/10.1101/gad.1110003 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Inoue M, Saeki M, Egusa H, Niwa H, Kamisaki Y (2010) PIH1D1, a subunit of R2TP complex, inhibits doxorubicin-induced apoptosis. Biochem Biophys Res Commun 403:340–344.  https://doi.org/10.1016/j.bbrc.2010.11.031 CrossRefPubMedGoogle Scholar
  100. Itsuki Y et al (2008) Molecular cloning of novel Monad binding protein containing tetratricopeptide repeat domains. FEBS Lett 582:2365–2370.  https://doi.org/10.1016/j.febslet.2008.05.041 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Izumi N et al (2010) AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay. Sci Signal 3:ra27.  https://doi.org/10.1126/scisignal.2000468 CrossRefPubMedGoogle Scholar
  102. Izumi N, Yamashita A, Hirano H, Ohno S (2012) Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex. Cancer Sci 103:50–57.  https://doi.org/10.1111/j.1349-7006.2011.02112.x CrossRefGoogle Scholar
  103. Jeganathan A, Leong V, Zhao L, Huen J, Nano N, Houry WA, Ortega J (2015) Yeast rvb1 and rvb2 proteins oligomerize as a conformationally variable dodecamer with low frequency. J Mol Biol 427:1875–1886.  https://doi.org/10.1016/j.jmb.2015.01.010 CrossRefPubMedGoogle Scholar
  104. Jeronimo C et al (2007) Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 27:262–274.  https://doi.org/10.1016/j.molcel.2007.06.027 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Jiang L, Luo X, Shi J, Sun H, Sun Q, Sheikh MS, Huang Y (2011) PDRG1, a novel tumor marker for multiple malignancies that is selectively regulated by genotoxic stress. Cancer Biol Ther 11:567–573.  https://doi.org/10.4161/cbt.11.6.14412 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Jimenez B, Ugwu F, Zhao R, Orti L, Makhnevych T, Pineda-Lucena A, Houry WA (2012) Structure of minimal tetratricopeptide repeat domain protein Tah1 reveals mechanism of its interaction with Pih1 and Hsp90. J Biol Chem 287:5698–5709.  https://doi.org/10.1074/jbc.M111.287458 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Jishage M et al (2012) Transcriptional regulation by Pol II(G) involving mediator and competitive interactions of Gdown1 and TFIIF with Pol II. Mol Cell 45:51–63.  https://doi.org/10.1016/j.molcel.2011.12.014 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Jonsson ZO et al (2001) Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes. J Biol Chem 276:16279–16288.  https://doi.org/10.1074/jbc.M011523200 CrossRefPubMedGoogle Scholar
  109. Kaizuka T et al (2010) Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 285:20109–20116.  https://doi.org/10.1074/jbc.M110.121699 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Kakihara Y, Makhnevych T, Zhao L, Tang W, Houry WA (2014) Nutritional status modulates box C/D snoRNP biogenesis by regulated subcellular relocalization of the R2TP complex. Genome Biol 15:404.  https://doi.org/10.1186/s13059-014-0404-4 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Kamano Y, Saeki M, Egusa H, Kakihara Y, Houry WA, Yatani H, Kamisaki Y (2013) PIH1D1 interacts with mTOR complex 1 and enhances ribosome RNA transcription. FEBS Lett 587:3303–3308.  https://doi.org/10.1016/j.febslet.2013.09.001 CrossRefPubMedGoogle Scholar
  112. Kandt RS et al (1992) Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet 2:37–41.  https://doi.org/10.1038/ng0992-37 CrossRefPubMedGoogle Scholar
  113. Kanemaki M et al (1999) TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 274:22437–22444CrossRefGoogle Scholar
  114. Kang J, Gemberling M, Nakamura M, Whitby FG, Handa H, Fairbrother WG, Tantin D (2009) A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev 23:208–222.  https://doi.org/10.1101/gad.1750709 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Kim TK, Lagrange T, Wang YH, Griffith JD, Reinberg D, Ebright RH (1997) Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. Proc Natl Acad Sci U S A 94:12268–12273CrossRefGoogle Scholar
  116. Kim JH et al (2005) Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature 434:921–926.  https://doi.org/10.1038/nature03452 CrossRefPubMedGoogle Scholar
  117. Kim SG et al (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49:172–185.  https://doi.org/10.1016/j.molcel.2012.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  118. King TH, Decatur WA, Bertrand E, Maxwell ES, Fournier MJ (2001) A well-connected and conserved nucleoplasmic helicase is required for production of box C/D and H/ACA snoRNAs and localization of snoRNP proteins. Mol Cell Biol 21:7731–7746.  https://doi.org/10.1128/MCB.21.22.7731-7746.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Kirchner J, Vissi E, Gross S, Szoor B, Rudenko A, Alphey L, White-Cooper H (2008) Drosophila Uri, a PP1alpha binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity. BMC Mol Biol 9:36.  https://doi.org/10.1186/1471-2199-9-36 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Knowles MR et al (2013) Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet 93:711–720.  https://doi.org/10.1016/j.ajhg.2013.07.025 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Kong X, Ma S, Guo J, Ma Y, Hu Y, Wang J, Zheng Y (2015) Ubiquitously expressed transcript is a novel interacting protein of protein inhibitor of activated signal transducer and activator of transcription 2. Mol Med Rep 11:2443–2448.  https://doi.org/10.3892/mmr.2014.3023 CrossRefPubMedGoogle Scholar
  122. Krogan NJ et al (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12:1565–1576CrossRefGoogle Scholar
  123. Kufel J, Allmang C, Chanfreau G, Petfalski E, Lafontaine DL, Tollervey D (2000) Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding. Mol Cell Biol 20:5415–5424CrossRefGoogle Scholar
  124. Lakomek K, Stoehr G, Tosi A, Schmailzl M, Hopfner KP (2015) Structural basis for dodecameric assembly states and conformational plasticity of the full-length AAA+ ATPases Rvb1. Rvb2. Structure 23:483–495.  https://doi.org/10.1016/j.str.2014.12.015 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Le TT, Zhang S, Hayashi N, Yasukawa M, Delgermaa L, Murakami S (2005) Mutational analysis of human RNA polymerase II subunit 5 (RPB5): the residues critical for interactions with TFIIF subunit RAP30 and hepatitis B virus X protein. J Biochem 138:215–224.  https://doi.org/10.1093/jb/mvi119 CrossRefPubMedGoogle Scholar
  126. Lee Y et al (2011) Prefoldin 5 Is Required for Normal Sensory and Neuronal Development in a Murine Model. J Biol Chem 286:726–736CrossRefGoogle Scholar
  127. Li W et al (2005) Androgen receptor mutations identified in prostate cancer and androgen insensitivity syndrome display aberrant ART-27 coactivator function. Mol Endocrinol 19:2273–2282.  https://doi.org/10.1210/me.2005-0134 CrossRefPubMedGoogle Scholar
  128. Li W et al (2014) UXT is a novel regulatory factor of regulatory T cells associated with Foxp3 Eur. J Immunol 44:533–544.  https://doi.org/10.1002/eji.201343394 CrossRefGoogle Scholar
  129. Li Y, Zhao L, Yuan S, Zhang J, Sun Z (2017) Axonemal dynein assembly requires the R2TP complex component Pontin. Development 144:4684–4693.  https://doi.org/10.1242/dev.152314 CrossRefPubMedGoogle Scholar
  130. Lin Y, Nomura T, Cheong J, Dorjsuren D, Iida K, Murakami S (1997) Hepatitis B virus X protein is a transcriptional modulator that communicates with transcription factor IIB and the RNA polymerase II subunit 5. J Biol Chem 272:7132–7139CrossRefGoogle Scholar
  131. Lipinski KA, Britschgi C, Schrader K, Christinat Y, Frischknecht L, Krek W (2016) Colorectal cancer cells display chaperone dependency for the unconventional prefoldin URI1. Oncotarget 7:29635–29647.  https://doi.org/10.18632/oncotarget.8816 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Lopez-Perrote A, Munoz-Hernandez H, Gil D, Llorca O (2012) Conformational transitions regulate the exposure of a DNA-binding domain in the RuvBL1-RuvBL2 complex. Nucleic Acids Res 40:11086–11099.  https://doi.org/10.1093/nar/gks871 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Lopez-Perrote A, Alatwi HE, Torreira E, Ismail A, Ayora S, Downs JA, Llorca O (2014) Structure of Yin Yang 1 oligomers that cooperate with RuvBL1-RuvBL2 ATPases. J Biol Chem 289:22614–22629.  https://doi.org/10.1074/jbc.M114.567040 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727.  https://doi.org/10.1074/jbc.R800045200 CrossRefPubMedGoogle Scholar
  135. Luo X, Huang Y, Sheikh MS (2003) Cloning and characterization of a novel gene PDRG that is differentially regulated by p53 and ultraviolet radiation. Oncogene 22:7247–7257.  https://doi.org/10.1038/sj.onc.1207010 CrossRefPubMedGoogle Scholar
  136. Luo D et al (2016) URI prevents potassium dichromate-induced oxidative stress and cell death in gastric cancer cells. Am J Transl Res 8:5399–5409PubMedPubMedCentralGoogle Scholar
  137. Machado-Pinilla R, Liger D, Leulliot N, Meier UT (2012) Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs. RNA 18:1833–1845.  https://doi.org/10.1261/rna.034942.112 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Malinova A et al (2017) Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Biol 216:1579–1596.  https://doi.org/10.1083/jcb.201701165 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Mao YQ, Houry WA (2017) The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology. Front Mol Biosci 4:58.  https://doi.org/10.3389/fmolb.2017.00058 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Markus SM et al (2002) Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus. Mol Biol Cell 13:670–682.  https://doi.org/10.1091/mbc.01-10-0513 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Martin-Benito J et al (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21:6377–6386CrossRefGoogle Scholar
  142. Martin-Benito J et al (2007) Divergent substrate-binding mechanisms reveal an evolutionary specialization of eukaryotic prefoldin compared to its archaeal counterpart. Structure 15:101–110.  https://doi.org/10.1016/j.str.2006.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Martinez-Fernandez V et al (2018) Rpb5 mvodulates the RNA polymerase II transition from initiation to elongation by influencing Spt5 association and backtracking. Biochim Biophys Acta 1861:1–13.  https://doi.org/10.1016/j.bbagrm.2017.11.002 CrossRefGoogle Scholar
  144. Martino F et al (2018) RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex. Nat Commun 9:1501.  https://doi.org/10.1038/s41467-018-03942-1 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Matias PM, Gorynia S, Donner P, Carrondo MA (2006) Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 281:38918–38929.  https://doi.org/10.1074/jbc.M605625200 CrossRefPubMedGoogle Scholar
  146. Maurizy C et al (2018) The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun 9:2093.  https://doi.org/10.1038/s41467-018-04431-1 CrossRefPubMedPubMedCentralGoogle Scholar
  147. McGilvray R, Walker M, Bartholomew C (2007) UXT interacts with the transcriptional repressor protein EVI1 and suppresses cell transformation. FEBS J 274:3960–3971.  https://doi.org/10.1111/j.1742-4658.2007.05928.x CrossRefGoogle Scholar
  148. McKeegan KS, Debieux CM, Boulon S, Bertrand E, Watkins NJ (2007) A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol Cell Biol 27:6782–6793.  https://doi.org/10.1128/MCB.01097-07 CrossRefPubMedPubMedCentralGoogle Scholar
  149. McKeegan KS, Debieux CM, Watkins NJ (2009) Evidence that the AAA+ proteins TIP48 and TIP49 bridge interactions between 15.5K and the related NOP56 and NOP58 proteins during box C/D snoRNP biogenesis. Mol Cell Biol 29:4971–4981.  https://doi.org/10.1128/MCB.00752-09 CrossRefPubMedPubMedCentralGoogle Scholar
  150. McMahon SB, Wood MA, Cole MD (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 20:556–562CrossRefGoogle Scholar
  151. Means JC, Venkatesan A, Gerdes B, Fan JY, Bjes ES, Price JL (2015) Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy. PLoS Genet 11:e1005171.  https://doi.org/10.1371/journal.pgen.1005171 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Mi F, Gong L (2017) Secretion of interleukin-6 by bone marrow mesenchymal stem cells promotes metastasis in hepatocellular carcinoma. Biosci Rep 37.  https://doi.org/10.1042/BSR20170181 CrossRefGoogle Scholar
  153. Miller JM, Enemark EJ (2016) Fundamental characteristics of AAA+ protein family structure and function. Archaea 2016:9294307.  https://doi.org/10.1155/2016/9294307 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Millson SH et al (2008) Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochem J 413:261–268.  https://doi.org/10.1042/BJ20080105 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Mir RA et al (2015) A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle. Prog Mol Cell Biol 36:886–899.  https://doi.org/10.1128/MCB.00594-15 CrossRefGoogle Scholar
  156. Mir RA et al (2016) Biophysical characterization and modeling of human Ecdysoneless (ECD) protein supports a scaffolding function. AIMS Biophys 3:195–208.  https://doi.org/10.3934/biophy.2016.1.195 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Miron-Garcia MC, Garrido-Godino AI, Garcia-Molinero V, Hernandez-Torres F, Rodriguez-Navarro S, Navarro F (2013) The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet 9:e1003297.  https://doi.org/10.1371/journal.pgen.1003297 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Miron-Garcia MC et al (2014) The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription. Nucleic Acids Res 42:9666–9676.  https://doi.org/10.1093/nar/gku685 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Mita P et al (2011) Regulation of androgen receptor-mediated transcription by RPB5 binding protein URI/RMP. Mol Cell Biol 31:3639–3652.  https://doi.org/10.1128/MCB.05429-11 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Mita P, Savas JN, Ha S, Djouder N, Yates JR 3rd, Logan SK (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One 8:e63879.  https://doi.org/10.1371/journal.pone.0063879 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Mita P et al (2016) URI regulates KAP1 phosphorylation and transcriptional repression via PP2A phosphatase in prostate cancer cells. J Biol Chem 291:25516–25528.  https://doi.org/10.1074/jbc.M116.741660 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′- ->5′ exoribonucleases. Cell 91:457–466CrossRefGoogle Scholar
  163. Miyao T, Woychik NA (1998) RNA polymerase subunit RPB5 plays a role in transcriptional activation. Proc Natl Acad Sci U S A 95:15281–15286CrossRefGoogle Scholar
  164. Nano N, Houry WA (2013) Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos Trans R Soc Lond Ser B Biol Sci 368:20110399.  https://doi.org/10.1098/rstb.2011.0399 CrossRefGoogle Scholar
  165. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300.  https://doi.org/10.1038/371297a0 CrossRefPubMedGoogle Scholar
  166. Newman AJ (1997) The role of U5 snRNP in pre-mRNA splicing. EMBO J 16:5797–5800.  https://doi.org/10.1093/emboj/16.19.5797 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Newman DR, Kuhn JF, Shanab GM, Maxwell ES (2000) Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription. RNA 6:861–879CrossRefGoogle Scholar
  168. Ni L, Saeki M, Xu L, Nakahara H, Saijo M, Tanaka K, Kamisaki Y (2009) RPAP3 interacts with Reptin to regulate UV-induced phosphorylation of H2AX and DNA damage. J Cell Biochem 106:920–928.  https://doi.org/10.1002/jcb.22073 CrossRefPubMedGoogle Scholar
  169. Niewiarowski A, Bradley AS, Gor J, McKay AR, Perkins SJ, Tsaneva IR (2010) Oligomeric assembly and interactions within the human RuvB-like RuvBL1 and RuvBL2 complexes. Biochem J 429:113–125.  https://doi.org/10.1042/BJ20100489 CrossRefPubMedGoogle Scholar
  170. Ninkina N, Peters O, Millership S, Salem H, van der Putten H, Buchman VL (2009) Gamma-synucleinopathy: neurodegeneration associated with overexpression of the mouse protein. Hum Mol Genet 18:1779–1794.  https://doi.org/10.1093/hmg/ddp090 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Nottrott S, Hartmuth K, Fabrizio P, Urlaub H, Vidovic I, Ficner R, Luhrmann R (1999) Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5′ stem-loop of U4 snRNA. EMBO J 18:6119–6133.  https://doi.org/10.1093/emboj/18.21.6119 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Nwachukwu JC et al (2007) Transcriptional regulation of the androgen receptor cofactor androgen receptor trapped clone-27. Mol Endocrinol 21:2864–2876.  https://doi.org/10.1210/me.2007-0094 CrossRefPubMedGoogle Scholar
  173. Nwachukwu JC et al (2009) Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells. Cancer Res 69:3140–3147.  https://doi.org/10.1158/0008-5472.CAN-08-3738 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Olcese C et al (2017) X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 8:14279.  https://doi.org/10.1038/ncomms14279 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Omran H et al (2008) Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456:611–616.  https://doi.org/10.1038/nature07471 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Ostrov DA et al (2007) Characterization of HKE2: an ancient antigen encoded in the major histocompatibility complex. Tissue Antigens 69:181–188.  https://doi.org/10.1111/j.1399-0039.2006.00730.x CrossRefPubMedGoogle Scholar
  177. Paci A, Liu XH, Huang H, Lim A, Houry WA, Zhao R (2012) The stability of the small nucleolar ribonucleoprotein (snoRNP) assembly protein Pih1 in Saccharomyces cerevisiae is modulated by its C terminus. J Biol Chem 287:43205–43214.  https://doi.org/10.1074/jbc.M112.408849 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Paci A, Liu PX, Zhang L, Zhao R (2016) The Proteasome Subunit Rpn8 Interacts with the Small Nucleolar RNA Protein (snoRNP) Assembly Protein Pih1 and Mediates Its Ubiquitin-independent Degradation in Saccharomyces cerevisiae. J Biol Chem 291:11761–11775.  https://doi.org/10.1074/jbc.M115.702043 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Pal M et al (2014) Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22:805–818.  https://doi.org/10.1016/j.str.2014.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Panizzi JR et al (2012) CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet 44:714–719.  https://doi.org/10.1038/ng.2277 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Parusel CT, Kritikou EA, Hengartner MO, Krek W, Gotta M (2006) URI-1 is required for DNA stability in C. elegans. Development 133:621–629.  https://doi.org/10.1242/dev.02235 CrossRefGoogle Scholar
  182. Patel-King RS, King SM (2016) A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia. Mol Biol Cell 27:1204–1209.  https://doi.org/10.1091/mbc.E16-01-0040 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Pati UK, Weissman SM (1989) Isolation and molecular characterization of a cDNA encoding the 23-kDa subunit of human RNA polymerase II. J Biol Chem 264:13114–13121PubMedGoogle Scholar
  184. Patil KS et al (2015) A Proteomics Approach to Investigate miR-153-3p and miR-205-5p Targets in Neuroblastoma Cells. PLoS One 10:e0143969.  https://doi.org/10.1371/journal.pone.0143969 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Paull TT, Gellert M (1998) The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1:969–979CrossRefGoogle Scholar
  186. Peng WT et al (2003) A panoramic view of yeast noncoding RNA processing. Cell 113:919–933CrossRefGoogle Scholar
  187. Perez C, Perez-Zuniga FJ, Garrido F, Reytor E, Portillo F, Pajares MA (2016) The Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases. PLoS One 11:e0161672.  https://doi.org/10.1371/journal.pone.0161672 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Prieto MB, Georg RC, Gonzales-Zubiate FA, Luz JS, Oliveira CC (2015) Nop17 is a key R2TP factor for the assembly and maturation of box C/D snoRNP complex. BMC Mol Biol 16:7.  https://doi.org/10.1186/s12867-015-0037-5 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR (2007) Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol 366:179–192.  https://doi.org/10.1016/j.jmb.2006.11.030 CrossRefPubMedGoogle Scholar
  190. Qi M, Ganapathy S, Zeng W, Zhang J, Little JB, Yuan ZM (2015) UXT, a novel MDMX-binding protein, promotes glycolysis by mitigating p53-mediated restriction of NF-kappaB activity. Oncotarget 6:17584–17593.  https://doi.org/10.18632/oncotarget.3770 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Qiu XB et al (1998) An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J Biol Chem 273:27786–27793CrossRefGoogle Scholar
  192. Quinternet M et al (2015) Structure/Function Analysis of Protein-Protein Interactions Developed by the Yeast Pih1 Platform Protein and Its Partners in Box C/D snoRNP Assembly. J Mol Biol 427:2816–2839.  https://doi.org/10.1016/j.jmb.2015.07.012 CrossRefPubMedGoogle Scholar
  193. Rajendra E, Garaycoechea JI, Patel KJ, Passmore LA (2014) Abundance of the Fanconi anaemia core complex is regulated by the RuvBL1 and RuvBL2 AAA+ ATPases. Nucleic Acids Res 42:13736–13748.  https://doi.org/10.1093/nar/gku1230 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Rao F et al (2014) Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell 54:119–132.  https://doi.org/10.1016/j.molcel.2014.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Rivera-Calzada A et al (2017) The Structure of the R2TP Complex Defines a Platform for Recruiting Diverse Client Proteins to the HSP90 Molecular Chaperone System. Structure 25:1145–1152 e1144.  https://doi.org/10.1016/j.str.2017.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Robert F et al (2006) The transcriptional histone acetyltransferase cofactor TRRAP associates with the MRN repair complex and plays a role in DNA double-strand break repair. Mol Cell Biol 26:402–412.  https://doi.org/10.1128/MCB.26.2.402-412.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Rosenbaum J, Baek SH, Dutta A, Houry WA, Huber O, Hupp TR, Matias PM (2013) The emergence of the conserved AAA+ ATPases Pontin and Reptin on the signaling landscape. Sci Signal 6:mr1.  https://doi.org/10.1126/scisignal.2003906 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Rothe B et al (2014a) Characterization of the interaction between protein Snu13p/15.5K and the Rsa1p/NUFIP factor and demonstration of its functional importance for snoRNP assembly. Nucleic Acids Res 42:2015–2036.  https://doi.org/10.1093/nar/gkt1091 CrossRefPubMedGoogle Scholar
  199. Rothe B et al (2014b) Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction. Nucleic Acids Res 42:10731–10747.  https://doi.org/10.1093/nar/gku612 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Rottbauer W et al (2002) Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 111:661–672CrossRefGoogle Scholar
  201. Saeki M, Irie Y, Ni L, Yoshida M, Itsuki Y, Kamisaki Y (2006) Monad, a WD40 repeat protein, promotes apoptosis induced by TNF-alpha. Biochem Biophys Res Commun 342:568–572.  https://doi.org/10.1016/j.bbrc.2006.02.009 CrossRefPubMedGoogle Scholar
  202. Saeki M et al (2013) Exosome-bound WD repeat protein Monad inhibits breast cancer cell invasion by degrading amphiregulin mRNA. PLoS One 8:e67326.  https://doi.org/10.1371/journal.pone.0067326 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Saigusa S et al (2012) Gene expression profiles of tumor regression grade in locally advanced rectal cancer after neoadjuvant chemoradiotherapy. Oncol Rep 28:855–861.  https://doi.org/10.3892/or.2012.1863 CrossRefPubMedGoogle Scholar
  204. Sanchez-Morgan N, Kirsch KH, Trackman PC, Sonenshein GE (2017) UXT Is a LOX-PP interacting protein that modulates estrogen receptor alpha activity in breast cancer cells. J Cell Biochem 118:2347–2356.  https://doi.org/10.1002/jcb.25893 CrossRefPubMedGoogle Scholar
  205. Sardiu ME et al (2008) Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci U S A 105:1454–1459.  https://doi.org/10.1073/pnas.0706983105 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Schafler ED et al (2018) UXT is required for spermatogenesis in mice. PLoS One 13:e0195747.  https://doi.org/10.1371/journal.pone.0195747 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Schroer A, Schneider S, Ropers H, Nothwang H (1999) Cloning and characterization of UXT, a novel gene in human Xp11, which is widely and abundantly expressed in tumor tissue. Genomics 56:340–343CrossRefGoogle Scholar
  208. Sethurathinam S, Singh LP, Panneerselvam P, Byrne B, Ding JL (2013) UXT plays dual opposing roles on SARM-induced apoptosis. FEBS Lett 587:3296–3302.  https://doi.org/10.1016/j.febslet.2013.08.033 CrossRefPubMedGoogle Scholar
  209. Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544.  https://doi.org/10.1038/35020123 CrossRefPubMedGoogle Scholar
  210. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168.  https://doi.org/10.1038/nrc1011 CrossRefPubMedGoogle Scholar
  211. Shimada K, Saeki M, Egusa H, Fukuyasu S, Yura Y, Iwai K, Kamisaki Y (2011) RPAP3 enhances cytotoxicity of doxorubicin by impairing NF-kappa B pathway. Biochem Biophys Res Commun 404:910–914.  https://doi.org/10.1016/j.bbrc.2010.12.071 CrossRefPubMedGoogle Scholar
  212. Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, Hartl FU (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 18:75–84.  https://doi.org/10.1093/emboj/18.1.75 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621–632.  https://doi.org/10.1016/S0092-8674(00)00165-3 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Sigala B, Edwards M, Puri T, Tsaneva IR (2005) Relocalization of human chromatin remodeling cofactor TIP48 in mitosis. Exp Cell Res 310:357–369.  https://doi.org/10.1016/j.yexcr.2005.07.030 CrossRefPubMedGoogle Scholar
  215. Silva-Martin N et al (2016) The Combination of X-Ray Crystallography and Cryo-Electron Microscopy Provides Insight into the Overall Architecture of the Dodecameric Rvb1/Rvb2 Complex. PLoS One 11:e0146457.  https://doi.org/10.1371/journal.pone.0146457 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Silveira HC, Sommer CA, Soares-Costa A, Henrique-Silva F (2004) A calcineurin inhibitory protein overexpressed in Down’s syndrome interacts with the product of a ubiquitously expressed transcript Braz J Med Biol Res 37:785–789. /S0100-879X2004000600002CrossRefGoogle Scholar
  217. Simons CT, Staes A, Rommelaere H, Ampe C, Lewis SA, Cowan NJ (2004) Selective contribution of eukaryotic prefoldin subunits to actin and tubulin binding. J Biol Chem 279:4196–4203.  https://doi.org/10.1074/jbc.M306053200 CrossRefPubMedPubMedCentralGoogle Scholar
  218. Soutourina J et al (2006) Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol Cell Biol 26:4920–4933.  https://doi.org/10.1128/MCB.00415-06 CrossRefPubMedPubMedCentralGoogle Scholar
  219. Stewart GS et al (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99:577–587CrossRefGoogle Scholar
  220. Su SK et al (2016) The EZH1-SUZ12 complex positively regulates the transcription of NF-kappaB target genes through interaction with UXT. J Cell Sci 129:2343–2353.  https://doi.org/10.1242/jcs.185546 CrossRefPubMedGoogle Scholar
  221. Sun S et al (2007) UXT is a novel and essential cofactor in the NF-kappaB transcriptional enhanceosome. J Cell Biol 178:231–244.  https://doi.org/10.1083/jcb.200611081 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Takai H, Wang RC, Takai KK, Yang H, de Lange T (2007) Tel2 regulates the stability of PI3K-related protein kinases. Cell 131:1248–1259.  https://doi.org/10.1016/j.cell.2007.10.052 CrossRefPubMedGoogle Scholar
  223. Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24:2019–2030.  https://doi.org/10.1101/gad.1956410 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Takano M, Tashiro E, Kitamura A, Maita H, Iguchi-Ariga SM, Kinjo M, Ariga H (2013) Prefoldin prevents aggregation of alpha-synuclein. Brain Res 1542:186–194.  https://doi.org/10.1016/j.brainres.2013.10.034 CrossRefGoogle Scholar
  225. Taneja SS et al (2004) ART-27, an androgen receptor coactivator regulated in prostate development and cancer. J Biol Chem 279:13944–13952.  https://doi.org/10.1074/jbc.M306576200 CrossRefGoogle Scholar
  226. Tao Z, Chen S, Mao G, Xia H, Huang H, Ma H (2016) The PDRG1 is an oncogene in lung cancer cells, promoting radioresistance via the ATM-P53 signaling pathway. Biomed Pharmacother 83:1471–1477.  https://doi.org/10.1016/j.biopha.2016.08.034 CrossRefPubMedGoogle Scholar
  227. Tarkar A et al (2013) DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 45:995–1003.  https://doi.org/10.1038/ng.2707 CrossRefPubMedPubMedCentralGoogle Scholar
  228. Tashiro E et al (2013) Prefoldin protects neuronal cells from polyglutamine toxicity by preventing aggregation formation. J Biol Chem 288:19958–19972.  https://doi.org/10.1074/jbc.M113.477984 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Te J, Jia L, Rogers J, Miller A, Hartson SD (2007) Novel subunits of the mammalian Hsp90 signal transduction chaperone. J Proteome Res 6:1963–1973.  https://doi.org/10.1021/pr060595i CrossRefPubMedGoogle Scholar
  230. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward. Rheb Curr Biol 13:1259–1268CrossRefGoogle Scholar
  231. Theurillat JP et al (2011) URI is an oncogene amplified in ovarian cancer cells and is required for their survival. Cancer Cell 19:317–332.  https://doi.org/10.1016/j.ccr.2011.01.019 CrossRefGoogle Scholar
  232. Thiru A, Hodach M, Eloranta JJ, Kostourou V, Weinzierl RO, Matthews S (1999) RNA polymerase subunit H features a beta-ribbon motif within a novel fold that is present in archaea and eukaryotes. J Mol Biol 287:753–760.  https://doi.org/10.1006/jmbi.1999.2638 CrossRefPubMedGoogle Scholar
  233. Tian S et al (2017) Pih1p-Tah1p Puts a Lid on Hexameric AAA+ ATPases Rvb1/2p. Structure 25:1519–1529 e1514.  https://doi.org/10.1016/j.str.2017.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  234. Todone F, Weinzierl RO, Brick P, Onesti S (2000) Crystal structure of RPB5, a universal eukaryotic RNA polymerase subunit and transcription factor interaction target. Proc Natl Acad Sci U S A 97:6306–6310CrossRefGoogle Scholar
  235. Torreira E et al (2008) Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes. Structure 16:1511–1520.  https://doi.org/10.1016/j.str.2008.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  236. Tummala KS et al (2014) Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26:826–839.  https://doi.org/10.1016/j.ccell.2014.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  237. Tummala KS, Brandt M, Teijeiro A, Grana O, Schwabe RF, Perna C, Djouder N (2017) Hepatocellular carcinomas originate predominantly from hepatocytes and benign lesions from hepatic progenitor cells. Cell Rep 19:584–600.  https://doi.org/10.1016/j.celrep.2017.03.059 CrossRefPubMedPubMedCentralGoogle Scholar
  238. Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873CrossRefGoogle Scholar
  239. van der Voorn L, Ploegh HL (1992) The WD-40 repeat. FEBS Lett 307:131–134CrossRefGoogle Scholar
  240. van Slegtenhorst M et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science (New York, NY) 277:805–808CrossRefGoogle Scholar
  241. Varon R et al (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93:467–476CrossRefGoogle Scholar
  242. Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132:945–957.  https://doi.org/10.1016/j.cell.2008.01.019 CrossRefPubMedPubMedCentralGoogle Scholar
  243. von Morgen P et al (2017) MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene 36:4943–4950.  https://doi.org/10.1038/onc.2017.99 CrossRefGoogle Scholar
  244. Wang Q et al (2014) The viral oncoprotein HBx of Hepatitis B virus promotes the growth of hepatocellular carcinoma through cooperating with the cellular oncoprotein RMP. Int J Biol Sci 10:1181–1192.  https://doi.org/10.7150/ijbs.10275 CrossRefPubMedPubMedCentralGoogle Scholar
  245. Wang J et al (2015a) MicroRNA-214 suppresses oncogenesis and exerts impact on prognosis by targeting PDRG1 in bladder cancer. PLoS One 10:e0118086.  https://doi.org/10.1371/journal.pone.0118086 CrossRefPubMedPubMedCentralGoogle Scholar
  246. Wang Y, Garabedian MJ, Logan SK (2015b) URI1 amplification in uterine carcinosarcoma associates with chemo-resistance and poor prognosis. Am J Cancer Res 5:2320–2329PubMedPubMedCentralGoogle Scholar
  247. Watkins NJ, Gottschalk A, Neubauer G, Kastner B, Fabrizio P, Mann M, Lührmann R (1998) Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4:1549–1568CrossRefGoogle Scholar
  248. Watkins NJ et al (2000) A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP. Cell 103:457–466CrossRefGoogle Scholar
  249. Wei W, Gu JX, Zhu CQ, Sun FY, Dorjsuren D, Lin Y, Murakami S (2003) Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein (RMP). Cell Res 13:111–120.  https://doi.org/10.1038/sj.cr.7290155 CrossRefGoogle Scholar
  250. Woodford MR et al (2017) Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients. EMBO J 36:3650–3665.  https://doi.org/10.15252/embj.201796700 CrossRefPubMedPubMedCentralGoogle Scholar
  251. Wu Z et al (2011) LRP16 integrates into NF-kappaB transcriptional complex and is required for its functional activation. PLoS One 6:e18157.  https://doi.org/10.1371/journal.pone.0018157 CrossRefPubMedPubMedCentralGoogle Scholar
  252. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484.  https://doi.org/10.1016/j.cell.2006.01.016 CrossRefPubMedGoogle Scholar
  253. Xu C, Min J (2011) Structure and function of WD40 domain proteins. Protein Cell 2:202–214.  https://doi.org/10.1007/s13238-011-1018-1 CrossRefPubMedPubMedCentralGoogle Scholar
  254. Xu T, Xiao D (2017) Oleuropein enhances radiation sensitivity of nasopharyngeal carcinoma by downregulating PDRG1 through HIF1alpha-repressed microRNA-519d. J Exp Clinic Cancer Res: CR 36:3.  https://doi.org/10.1186/s13046-016-0480-2 CrossRefGoogle Scholar
  255. Xu Z et al (2017) URI promotes the migration and invasion of human cervical cancer cells potentially via upregulation of vimentin expression. Am J Transl Res 9:3037–3047PubMedPubMedCentralGoogle Scholar
  256. Yamaguchi H, Oda T, Kikkawa M, Takeda H (2018) Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly. elife 7.  https://doi.org/10.7554/eLife.36979
  257. Yamashita A, Kashima I, Ohno S (2005) The role of SMG-1 in nonsense-mediated mRNA decay. Biochim Biophys Acta 1754:305–315.  https://doi.org/10.1016/j.bbapap.2005.10.002 CrossRefPubMedGoogle Scholar
  258. Yang Y, Zheng L, Chen Y (2000) Study of HBV X protein and RMP, an RPB5 mediate protein competitively interacting with general transcription factor TF2B. Zhonghua Gan Zang Bing Za Zhi 8:15–17PubMedGoogle Scholar
  259. Yang J et al (2009) The single-macro domain protein LRP16 is an essential cofactor of androgen receptor. Endocr Relat Cancer 16:139–153.  https://doi.org/10.1677/ERC-08-0150 CrossRefPubMedGoogle Scholar
  260. Yang H et al (2011) RPB5-mediating protein is required for the proliferation of hepatocellular carcinoma cells. J Biol Chem 286:11865–11874.  https://doi.org/10.1074/jbc.M110.136929 CrossRefPubMedPubMedCentralGoogle Scholar
  261. Yang S et al (2013) RMP plays distinct roles in the proliferation of hepatocellular carcinoma cells and normal hepatic cells. Int J Biol Sci 9:637–648.  https://doi.org/10.7150/ijbs.6439 CrossRefPubMedPubMedCentralGoogle Scholar
  262. Yart A, Gstaiger M, Wirbelauer C, Pecnik M, Anastasiou D, Hess D, Krek W (2005) The HRPT2 tumor suppressor gene product parafibromin associates with human PAF1 and RNA polymerase II. Mol Cell Biol 25:5052–5060.  https://doi.org/10.1128/MCB.25.12.5052-5060.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  263. Yin J et al (2017) UXT-AS1-induced alternative splicing of UXT is associated with tumor progression in colorectal cancer. Am J Cancer Res 7:462–472PubMedPubMedCentralGoogle Scholar
  264. Yip CK, Murata K, Walz T, Sabatini DM, Kang SA (2010) Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 38:768–774.  https://doi.org/10.1016/j.molcel.2010.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  265. Yoshida M et al (2013) RPAP3 splicing variant isoform 1 interacts with PIH1D1 to compose R2TP complex for cell survival. Biochem Biophys Res Commun 430:320–324.  https://doi.org/10.1016/j.bbrc.2012.11.017 CrossRefPubMedGoogle Scholar
  266. Zaros C, Briand JF, Boulard Y, Labarre-Mariotte S, Garcia-Lopez MC, Thuriaux P, Navarro F (2007) Functional organization of the Rpb5 subunit shared by the three yeast RNA polymerases. Nucleic Acids Res 35:634–647.  https://doi.org/10.1093/nar/gkl686 CrossRefPubMedGoogle Scholar
  267. Zhai N, Zhang Y, Shen YF (2009) Effect of PIH1D1 on the degradation of its binding protein SNF5. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 31:756–759.  https://doi.org/10.3881/j.issn.1000-503X.2009.06.021 CrossRefPubMedGoogle Scholar
  268. Zhai N et al (2012) Human PIH1 associates with histone H4 to mediate the glucose-dependent enhancement of pre-rRNA synthesis. J Mol Cell Biol 4:231–241.  https://doi.org/10.1093/jmcb/mjs003 CrossRefPubMedGoogle Scholar
  269. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578–581.  https://doi.org/10.1038/ncb999 CrossRefPubMedGoogle Scholar
  270. Zhang J et al (2015) RMP promotes venous metastases of hepatocellular carcinoma through promoting IL-6 transcription. Oncogene 34:1575–1583.  https://doi.org/10.1038/onc.2014.84 CrossRefPubMedGoogle Scholar
  271. Zhang Y, Rai M, Wang C, Gonzalez C, Wang H (2016) Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation. Sci Rep 6:23735.  https://doi.org/10.1038/srep23735 CrossRefPubMedPubMedCentralGoogle Scholar
  272. Zhao H, Wang Q, Zhang H, Liu Q, Du X, Richter M, Greene MI (2005a) UXT is a novel centrosomal protein essential for cell viability. Mol Biol Cell 16:5857–5865.  https://doi.org/10.1091/mbc.E05-08-0705 CrossRefPubMedPubMedCentralGoogle Scholar
  273. Zhao R et al (2005b) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727.  https://doi.org/10.1016/j.cell.2004.12.024 CrossRefPubMedGoogle Scholar
  274. Zhao R et al (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 180:563–578.  https://doi.org/10.1083/jcb.200709061 CrossRefPubMedPubMedCentralGoogle Scholar
  275. Zhao L et al (2013) Reptin/Ruvbl2 is a Lrrc6/Seahorse interactor essential for cilia motility. Proc Natl Acad Sci U S A 110:12697–12702.  https://doi.org/10.1073/pnas.1300968110 CrossRefPubMedPubMedCentralGoogle Scholar
  276. Zhong H, Bryson A, Eckersdorff M, Ferguson DO (2005) Rad50 depletion impacts upon ATR-dependent DNA damage responses. Hum Mol Genet 14:2685–2693.  https://doi.org/10.1093/hmg/ddi302 CrossRefPubMedGoogle Scholar
  277. Zhou W, Zhong Y, Wang H, Yang S, Wei W (2014) Biological function and molecular mechanism of URI in HepG2 cells. Zhonghua Zhong Liu Za Zhi 36:816–822PubMedGoogle Scholar
  278. Zhou Q et al (2015a) RPB5-mediating protein suppresses Hepatitis B Virus (HBV) transcription and replication by counteracting the transcriptional activation of Hepatitis B virus X protein in HBV replication mouse model Jundishapur. J Microbiol 8:e21936.  https://doi.org/10.5812/jjm.21936 CrossRefGoogle Scholar
  279. Zhou Y et al (2015b) UXT potentiates angiogenesis by attenuating. Notch Signal Dev 142:774–786.  https://doi.org/10.1242/dev.112532 CrossRefGoogle Scholar
  280. Zhou CY et al (2017a) Regulation of Rvb1/Rvb2 by a domain within the INO80 chromatin remodeling complex implicates the yeast Rvbs as protein assembly chaperones. Cell Rep 19:2033–2044.  https://doi.org/10.1016/j.celrep.2017.05.029 CrossRefPubMedPubMedCentralGoogle Scholar
  281. Zhou W, Wang Q, Xu Y, Jiang J, Guo J, Yu H, Wei W (2017b) RMP promotes epithelial-mesenchymal transition through NF-kappaB/CSN2/Snail pathway in hepatocellular carcinoma. Oncotarget 8:40373–40388.  https://doi.org/10.18632/oncotarget.16177 CrossRefPubMedPubMedCentralGoogle Scholar
  282. Zur Lage P et al (2018) Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. J Cell Biol 217(7):2583–2259.  https://doi.org/10.1083/jcb.201709026 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of TorontoTorontoCanada
  2. 2.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations