Role of the PAQosome in Regulating Arrangement of Protein Quaternary Structure in Health and Disease

  • Marie-Soleil Gauthier
  • Philippe Cloutier
  • Benoit CoulombeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1106)


The PAQosome, formerly known as the R2TP/PFDL complex, is an eleven-subunit cochaperone complex that assists HSP90 in the assembly of numerous large multisubunit protein complexes involved in essential cellular functions such as protein synthesis, ribosome biogenesis, transcription, splicing, and others. In this review, we discuss possible mechanisms of action and role of phosphorylation in the assembly of client complexes by the PAQosome as well as its potential role in cancer, ciliogenesis and ciliopathies.


R2TP Prefoldin-like PAQosome Chaperone Protein complex assembly Protein network Cancer Cilium Ciliopathies Phosphorylation Interactome Quaternary structure arrangement UXT URI1 PDRG1 


  1. Akama Y et al (1995) Frequent amplification of the cyclin E gene in human gastric carcinomas. Jpn J Cancer Res 86:617–621PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bartkova J et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864PubMedCrossRefPubMedCentralGoogle Scholar
  3. Benbahouche Nel H et al (2014) Drosophila Spag is the homolog of RNA polymerase II-associated protein 3 (RPAP3) and recruits the heat shock proteins 70 and 90 (Hsp70 and Hsp90) during the assembly of cellular machineries. J Biol Chem 289:6236–6247PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bizarro J et al (2015) NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Res 43:8973–8989PubMedPubMedCentralCrossRefGoogle Scholar
  5. Boulon S et al (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 180:579–595PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brajenovic M, Joberty G, Kuster B, Bouwmeester T, Drewes G (2004) Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J Biol Chem 279:12804–12811PubMedCrossRefPubMedCentralGoogle Scholar
  7. Burén S et al (2016) Regulation of OGT by URI in response to glucose confers c-MYC-dependent survival mechanisms. Cancer Cell 30:290–307PubMedCrossRefPubMedCentralGoogle Scholar
  8. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:1978PubMedCentralCrossRefGoogle Scholar
  10. Chen S, Chen K, Zhang Q, Cheng H, Zhou R (2013) Regulation of the transcriptional activation of the androgen receptor by the UXT-binding protein VHL. Biochem J 456:55–66PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chou CC, Wang AH (2015) Structural D/E-rich repeats play multiple roles especially in gene regulation through DNA/RNA mimicry. Mol BioSyst 11:2144–2151PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cloutier P, Coulombe B (2010) New insights into the biogenesis of nuclear RNA polymerases? Biochem Cell Biol 88:211–221PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cloutier P et al (2009) High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. Methods 48:381–386PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cloutier P, Lavallée-Adam M, Faubert D, Blanchette M, Coulombe B (2013) A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet 9:e1003210PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cloutier P et al (2017) R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 8:15615PubMedPubMedCentralCrossRefGoogle Scholar
  16. Coulombe B, Cloutier P, Gauthier MS (2018) How do our cells build their protein interactome? Nat Commun 9:2955PubMedPubMedCentralCrossRefGoogle Scholar
  17. Djouder N (2015) Boosting NAD(+) for the prevention and treatment of liver cancer. Mol Cell Oncol 2:e1001199PubMedPubMedCentralCrossRefGoogle Scholar
  18. Djouder N (2016) Adaptive survival mechanism to glucose restrictions. Oncoscience 3:302–303PubMedPubMedCentralGoogle Scholar
  19. Djouder N et al (2007) S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 28:28–40CrossRefGoogle Scholar
  20. Dong F et al (2014) Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm. J Cell Biol 204:203–213PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dorjsuren D et al (1998) RMP, a novel RNA polymerase II subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol Cell Biol 18:7546–7555PubMedPubMedCentralCrossRefGoogle Scholar
  22. Etemadmoghadam D et al (2010) Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer. PLoS One 5:e15498PubMedPubMedCentralCrossRefGoogle Scholar
  23. Faes S, Santoro T, Demartines N, Dormond O (2017) Evolving significance and future relevance of anti-angiogenic activity of mTOR inhibitors in cancer therapy. Cancers (Basel) 9:152CrossRefGoogle Scholar
  24. Fan JL et al (2014) URI regulates tumorigenicity and chemotherapeutic resistance of multiple myeloma by modulating IL-6 transcription. Cell Death Dis 5:e1126PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gonzales FA, Zanchin NI, Luz JS, Oliveira CC (2005) Characterization of Saccharomyces cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in pre-rRNA processing. J Mol Biol 346:437–455PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gstaiger M et al (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302:1208–1212CrossRefGoogle Scholar
  27. Gu J et al (2013a) Upregulation of URI/RMP gene expression in cervical cancer by high-throughput tissue microarray analysis. Int J Clin Exp Pathol 6:669–677PubMedPubMedCentralGoogle Scholar
  28. Gu J et al (2013b) Expression analysis of URI/RMP gene in endometrioid adenocarcinoma by tissue microarray immunohistochemistry. Int J Clin Exp Pathol 6:2396–2403PubMedPubMedCentralGoogle Scholar
  29. Gupta GD et al (2015) A dynamic protein interaction landscape of the human centrosome-cilium Interface. Cell 163:1484–1499PubMedPubMedCentralCrossRefGoogle Scholar
  30. Horejsi Z et al (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39:839–850PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hořejší Z et al (2014) Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep 7:19–26PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hornbeck PV et al (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520PubMedCrossRefPubMedCentralGoogle Scholar
  33. Houry WA, Bertrand E, Coulombe B (2017) The PAQosome, an R2TP-based chaperone for quaternary structure formation. Trends Biochem Sci 43(1):4–9PubMedCrossRefPubMedCentralGoogle Scholar
  34. Huang Y et al (2011) UXT-V1 protects cells against TNF-induced apoptosis through modulating complex II formation. Mol Biol Cell 22:1389–1397PubMedPubMedCentralCrossRefGoogle Scholar
  35. Huang Y et al (2012) UXT-V1 facilitates the formation of MAVS antiviral signalosome on mitochondria. J Immunol 188:358–366PubMedCrossRefPubMedCentralGoogle Scholar
  36. Huber O et al (2008) Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res 68:6873–6876PubMedPubMedCentralCrossRefGoogle Scholar
  37. Itsuki Y et al (2008) Molecular cloning of novel Monad binding protein containing tetratricopeptide repeat domains. FEBS Lett 582:2365–2370PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jeronimo C et al (2007) Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 27:262–274PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jha S, Dutta A (2009) RVB1/RVB2: running rings around molecular biology. Mol Cell 34:521–533PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jiang L et al (2011) PDRG1, a novel tumor marker for multiple malignancies that is selectively regulated by genotoxic stress. Cancer Biol Ther 11:567–573PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kakihara Y, Saeki M (2014) The R2TP chaperone complex: its involvement in snoRNP assembly and tumorigenesis. Biomol Concepts 5:513–520PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kakihara Y, Makhnevych T, Zhao L, Tang W, Houry WA (2014) Nutritional status modulates box C/D snoRNP biogenesis by regulated subcellular relocalization of the R2TP complex. Genome Biol 15:404PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kamano Y et al (2013) PIH1D1 interacts with mTOR complex 1 and enhances ribosome RNA transcription. FEBS Lett 587:3303–3308PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kim SG et al (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49:172–185PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kirchner J et al (2008) Drosophila Uri, a PP1alpha binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity. BMC Mol Biol 9:36PubMedPubMedCentralCrossRefGoogle Scholar
  46. Klammer M et al (2012) Phosphosignature predicts Dasatinib response in non-small cell lung Cancer. Molecular & Cellular Proteomics : MCP 11:651–668PubMedCrossRefPubMedCentralGoogle Scholar
  47. Knowles MR et al (2013) Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet 93:711–720PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kong X et al (2015) Ubiquitously expressed transcript is a novel interacting protein of protein inhibitor of activated signal transducer and activator of transcription 2. Mol Med Rep 11:2443–2448PubMedCrossRefPubMedCentralGoogle Scholar
  49. Leung SY et al (2006) Comprehensive analysis of 19q12 amplicon in human gastric cancers. Mod Pathol 19:854–863PubMedCrossRefPubMedCentralGoogle Scholar
  50. Li Y, Zhao L, Yuan S, Zhang J, Sun Z (2017) Axonemal dynein assembly requires the R2TP complex component Pontin. Development 144:4684–4693PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lin L et al (2000) Identification and characterization of a 19q12 amplicon in esophageal adenocarcinomas reveals cyclin E as the best candidate gene for this amplicon. Cancer Res 60:7021–7027PubMedPubMedCentralGoogle Scholar
  52. Luo X, Huang Y, Sheikh MS (2003) Cloning and characterization of a novel gene PDRG that is differentially regulated by p53 and ultraviolet radiation. Oncogene 22:7247–7257PubMedCrossRefGoogle Scholar
  53. Machado-Pinilla R, Liger D, Leulliot N, Meier UT (2012) Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs. RNA 18:1833–1845PubMedPubMedCentralCrossRefGoogle Scholar
  54. Malicki JJ, Johnson CA (2017) The cilium: cellular antenna and central processing unit. Trends Cell Biol 27:126–140PubMedPubMedCentralCrossRefGoogle Scholar
  55. Malinova A et al (2017) Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Biol 216:1579–1596PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mao YQ, Houry WA (2017) The role of pontin and reptin in cellular physiology and cancer etiology. Front Mol Biosci 4:58PubMedPubMedCentralCrossRefGoogle Scholar
  57. Markus SM et al (2002) Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus. Mol Biol Cell 13:670–682PubMedPubMedCentralCrossRefGoogle Scholar
  58. Martino F et al (2018) RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex. Nat Commun 9:1501PubMedPubMedCentralCrossRefGoogle Scholar
  59. Maurizy C et al. (2018) R2TP-like chaperones facilitate quaternary protein folding in a tissue-specific manner. Nat Commun: In PressGoogle Scholar
  60. Mir RA et al (2015) A novel interaction of Ecdysoneless (ECD) protein with R2TP complex component RUVBL1 is required for the functional role of ECD in cell cycle progression. Mol Cell Biol 36:886–899PubMedCrossRefPubMedCentralGoogle Scholar
  61. Mita P et al (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One 8:e63879PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mita P et al (2016) URI regulates KAP1 phosphorylation and transcriptional repression via PP2A phosphatase in prostate Cancer cells. J Biol Chem 291:25516–25528PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mitchison HM, Valente EM (2017) Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 241:294–309PubMedCrossRefPubMedCentralGoogle Scholar
  64. Morita M et al (2015) mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 14:473–480PubMedPubMedCentralCrossRefGoogle Scholar
  65. Murata H, Sakaguchi M, Kataoka K, Huh NH (2013) SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria. Mol Biol Cell 24:2772–2784PubMedPubMedCentralCrossRefGoogle Scholar
  66. Natrajan R et al (2012) Functional characterization of the 19q12 amplicon in grade III breast cancers. Breast Cancer Res 14:R53PubMedPubMedCentralCrossRefGoogle Scholar
  67. Noske A et al (2015) Characterization of the 19q12 amplification including CCNE1 and URI in different epithelial ovarian cancer subtypes. Exp Mol Pathol 98:47–54PubMedCrossRefPubMedCentralGoogle Scholar
  68. Noske A et al (2017) Detection of CCNE1/URI (19q12) amplification by in situ hybridisation is common in high grade and type II endometrial cancer. Oncotarget 8:14794–14805PubMedCrossRefPubMedCentralGoogle Scholar
  69. Nwachukwu JC et al (2009) Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells. Cancer Res 69:3140–3147PubMedPubMedCentralCrossRefGoogle Scholar
  70. Omran H et al (2008) Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456:611–616PubMedPubMedCentralCrossRefGoogle Scholar
  71. Paff T et al (2017) Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet 100:160–168PubMedCrossRefPubMedCentralGoogle Scholar
  72. Pajares MA (2017) PDRG1 at the interface between intermediary metabolism and oncogenesis. World J Biol Chem 8:175–186PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pal M et al (2014) Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22:805–818PubMedPubMedCentralCrossRefGoogle Scholar
  74. Patel-King RS, King SM (2016) A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia. Mol Biol Cell 27:1204–1209PubMedPubMedCentralCrossRefGoogle Scholar
  75. Prieto MB, Georg RC, Gonzales-Zubiate FA, Luz JS, Oliveira CC (2015) Nop17 is a key R2TP factor for the assembly and maturation of box C/D snoRNP complex. BMC Mol Biol 16:7PubMedPubMedCentralCrossRefGoogle Scholar
  76. Qi M et al (2015) UXT, a novel MDMX-binding protein, promotes glycolysis by mitigating p53-mediated restriction of NF-kappaB activity. Oncotarget 6:17584–17593PubMedPubMedCentralGoogle Scholar
  77. Reiter JF, Leroux MR (2017) Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 18:533–547PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sanchez-Morgan N, Kirsch KH, Trackman PC, Sonenshein GE (2017) UXT is a LOX-PP interacting protein that modulates estrogen receptor alpha activity in breast cancer cells. J Cell Biochem 118:2347–2356PubMedCrossRefPubMedCentralGoogle Scholar
  79. Sardiu ME et al (2008) Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci U S A 105:1454–1459PubMedPubMedCentralCrossRefGoogle Scholar
  80. Schroer A, Schneider S, Ropers H, Nothwang H (1999) Cloning and characterization of UXT, a novel gene in human Xp11, which is widely and abundantly expressed in tumor tissue. Genomics 56:340–343PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sethurathinam S, Singh LP, Panneerselvam P, Byrne B, Ding JL (2013) UXT plays dual opposing roles on SARM-induced apoptosis. FEBS Lett 587:3296–3302PubMedCrossRefPubMedCentralGoogle Scholar
  82. Shamseldin HE et al (2013) Mutations in DDX59 implicate RNA helicase in the pathogenesis of orofaciodigital syndrome. Am J Hum Genet 93:555–560PubMedPubMedCentralCrossRefGoogle Scholar
  83. St-Denis N et al (2016) Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators. Cell Rep 17:2488–2501PubMedCrossRefPubMedCentralGoogle Scholar
  84. Stuart SA et al (2015) A phosphoproteomic comparison of B-RAF(V600E) and MKK1/2 inhibitors in melanoma cells. Molecular & Cellular Proteomics : MCP 14:1599–1615PubMedCrossRefPubMedCentralGoogle Scholar
  85. Su SK et al (2016) The EZH1-SUZ12 complex positively regulates the transcription of NF-kappaB target genes through interaction with UXT. J Cell Sci 129:2343–2353PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sun S et al (2007) UXT is a novel and essential cofactor in the NF-kappaB transcriptional enhanceosome. J Cell Biol 178:231–244PubMedPubMedCentralCrossRefGoogle Scholar
  87. Taneja SS et al (2004) ART-27, an androgen receptor coactivator regulated in prostate development and cancer. J Biol Chem 279:13944–13952CrossRefGoogle Scholar
  88. Tao Z et al (2016) The PDRG1 is an oncogene in lung cancer cells, promoting radioresistance via the ATM-P53 signaling pathway. Biomed Pharmacother 83:1471–1477PubMedCrossRefPubMedCentralGoogle Scholar
  89. Tarkar A et al (2013) DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 45:995–1003PubMedPubMedCentralCrossRefGoogle Scholar
  90. Theurillat JP et al (2011) URI is an oncogene amplified in ovarian cancer cells and is required for their survival. Cancer Cell 19:317–332CrossRefGoogle Scholar
  91. Tummala KS, Djouder N (2015) Oncogene-induced NAD(+) depletion in tumorigenesis. Oncoscience 2:318–319PubMedPubMedCentralCrossRefGoogle Scholar
  92. Tummala KS et al (2014) Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26:826–839PubMedPubMedCentralCrossRefGoogle Scholar
  93. Van Leuven F et al (1998) Molecular cloning of a gene on chromosome 19q12 coding for a novel intracellular protein: analysis of expression in human and mouse tissues and in human tumor cells, particularly Reed-Sternberg cells in Hodgkin disease. Genomics 54:511–520CrossRefGoogle Scholar
  94. Verheggen C, Pradet-Balade B, Bertrand ESRNP (2015) ZNHIT proteins and the R2TP pathway. Oncotarget 6:41399–41400PubMedPubMedCentralCrossRefGoogle Scholar
  95. von Morgen P, Hořejší Z, Macurek L (2015) Substrate recognition and function of the R2TP complex in response to cellular stress. Front Genet 6:69Google Scholar
  96. von Morgen P et al (2017) MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene 36:4943–4950CrossRefGoogle Scholar
  97. Wang Q et al (2014) The viral oncoprotein HBx of hepatitis B virus promotes the growth of hepatocellular carcinoma through cooperating with the cellular oncoprotein RMP. Int J Biol Sci 10:1181–1192PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wang Y, Garabedian MJ, Logan SK (2015a) URI1 amplification in uterine carcinosarcoma associates with chemo-resistance and poor prognosis. Am J Cancer Res 5:2320–2329PubMedPubMedCentralGoogle Scholar
  99. Wang J et al (2015b) MicroRNA-214 suppresses oncogenesis and exerts impact on prognosis by targeting PDRG1 in bladder cancer. PLoS One 10:e0118086PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wu Y et al (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wu J et al (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38:226–256PubMedCrossRefGoogle Scholar
  102. Yamamoto R, Hirono M, Kamiya R (2010) Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. J Cell Biol 190:65–71PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yang H et al (2011) RPB5-mediating protein is required for the proliferation of hepatocellular carcinoma cells. J Biol Chem 286:11865–11874PubMedPubMedCentralCrossRefGoogle Scholar
  104. Yang S et al (2013) RMP plays distinct roles in the proliferation of hepatocellular carcinoma cells and normal hepatic cells. Int J Biol Sci 9:637–648PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yin J et al (2017) UXT-AS1-induced alternative splicing of UXT is associated with tumor progression in colorectal cancer. Am J Cancer Res 7:462–472PubMedPubMedCentralGoogle Scholar
  106. Zariwala M et al (2004) Investigation of the possible role of a novel gene, DPCD, in primary ciliary dyskinesia. Am J Respir Cell Mol Biol 30:428–434PubMedCrossRefGoogle Scholar
  107. Zhang J et al (2006) Cloning and characterization of a novel human prefoldin and SPEC domain protein gene (PFD6L) from the fetal brain. Biochem Genet 44:69–74PubMedGoogle Scholar
  108. Zhang J et al (2015a) RMP promotes venous metastases of hepatocellular carcinoma through promoting IL-6 transcription. Oncogene 34:1575–1583PubMedCrossRefGoogle Scholar
  109. Zhang J et al (2015b) RMP predicts survival and adjuvant TACE response in hepatocellular carcinoma. Oncotarget 6:3432–3442PubMedGoogle Scholar
  110. Zhao R et al (2005a) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120:715–727PubMedCrossRefPubMedCentralGoogle Scholar
  111. Zhao H et al (2005b) UXT is a novel centrosomal protein essential for cell viability. Mol Biol Cell 16:5857–5865PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zhou H et al (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12:260–271PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zhou Y et al (2015) UXT potentiates angiogenesis by attenuating Notch signaling. Development 142:774–786PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhou W et al (2017) RMP promotes epithelial-mesenchymal transition through NF-kappaB/CSN2/snail pathway in hepatocellular carcinoma. Oncotarget 8:40373–40388PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marie-Soleil Gauthier
    • 1
  • Philippe Cloutier
    • 1
  • Benoit Coulombe
    • 1
    • 2
    Email author
  1. 1.Institut de Recherches Cliniques de MontréalQCCanada
  2. 2.Department of Biochemistry and Molecular MedicineUniversité de MontréalQCCanada

Personalised recommendations