Skip to main content

Prefoldins in Archaea

  • Chapter
  • First Online:
Prefoldins: the new chaperones

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1106))

Abstract

Molecular chaperones promote the correct folding of proteins in aggregation-prone cellular environments by stabilizing nascent polypeptide chains and providing appropriate folding conditions. Prefoldins (PFDs) are molecular chaperones found in archaea and eukaryotes, generally characterized by a unique jellyfish-like hexameric structure consisting of a rigid beta-barrel backbone with protruding flexible coiled-coils. Unlike eukaryotic PFDs that mainly interact with cytoskeletal components, archaeal PFDs can stabilize a wide range of substrates; such versatility reflects PFD’s role as a key element in archaeal chaperone systems, which often lack general nascent-chain binding chaperone components such as Hsp70. While archaeal PFDs mainly exist as hexameric complexes, their structural diversity ranges from tetramers to filamentous oligomers. PFDs bind and stabilize nonnative proteins using varying numbers of coiled-coils, and subsequently transfer the substrate to a group II chaperonin (CPN) for refolding. The distinct structure and specific function of archaeal PFDs have been exploited for a broad range of applications in biotechnology; furthermore, a filament-forming variant of PFD has been used to fabricate nanoscale architectures of defined shapes, demonstrating archaeal PFDs’ potential applicability in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baek AH, Jeon EY, Lee SM, Park JB (2014) Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer–Villiger monooxygenase. Biotechnol Bioeng 112:889–895

    Article  Google Scholar 

  • Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354

    Article  Google Scholar 

  • Bando K, Zako T, Sakono M, Maeda M, Wada T, Nishijima M, Fukuhara G, Yang C, Mori T, Pace TCS, Bohne C, Inoue Y (2010) Bio-supramolecular photochirogenesis with molecular chaperone: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylatemediated by prefoldin. Photochem Photobiol Sci 9:655–660

    Article  CAS  Google Scholar 

  • Boonyaratanakornkit BB, Simpson AJ, Whitehead TA, Fraser CM, El-Sayed NMA, Clark DS (2005) Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ Microbiol 7:789–797

    Article  CAS  Google Scholar 

  • Chen H, Yang L, Zhang Y, Yang S (2010) Over-expression and characterization of recombinant prefoldin from hyperthermophilic archaeum Pyrococcus furiosus in E. coli. Biotechnol Lett 32:429–434

    Article  CAS  Google Scholar 

  • Danno A, Fukuda W, Yoshida M, Aki R, Tanaka T, Kanai T, Imanaka T, Fujiwara S (2008) Expression profiles and physiological roles of two types of prefoldins from the hyperthermophilic archaeon Thermococcus kodakaraensis. J Mol Biol 382:298–311

    Article  CAS  Google Scholar 

  • Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, Kumar R, Chiu W, Frydman J (2011) Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144:240–252

    Article  CAS  Google Scholar 

  • Fandrich M, Tito MA, Leroux MR, Rostom AA, Hartl FU, Dobson CM, Robinson CV (2000) Observation of the noncovalent assembly and disassembly pathways of the chaperone complex MtGimC by mass spectrometry. Proc Natl Acad Sci U S A 97:14151–14155

    Article  CAS  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    Article  CAS  Google Scholar 

  • Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17:955–966

    Article  Google Scholar 

  • Ghaffari A, Shokuhfar A, Ghasemi RH (2012) Capturing and releasing a nano cargo by Prefoldin nano actuator. Sensors Actuators B Chem 171–172:1199–1206

    Article  Google Scholar 

  • Glover DJ, Clark DS (2015) Oligomeric assembly is required for chaperone activity of the filamentous γ-prefoldin. FEBS J 282:2985–2997

    Article  CAS  Google Scholar 

  • Glover DJ, Clark DS (2016) Protein calligraphy: a new concept begins to take shape. ACS Cent Sci 2:438–444

    Article  CAS  Google Scholar 

  • Glover DJ, Giger L, Kim JR, Clark DS (2012) Engineering protein filaments with enhanced thermostability for nanomaterials. Biotechnol J 8:228–236

    Article  Google Scholar 

  • Glover DJ, Giger L, Kim SS, Naik RR, Clark DS (2016) Geometrical assembly of ultrastable protein templates for nanomaterials. Nat Commun 7:11771

    Article  CAS  Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer GH (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47

    Article  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  Google Scholar 

  • Iizuka R, Sugano Y, Ide N, Ohtaki A, Yoshida T, Fujiwara S, Imanaka T, Yohda M (2008) Functional characterization of recombinant prefoldin complexes from a hyperthermophilic archaeon, Thermococcus sp. strain KS-1. J Mol Biol 377:972–983

    Article  CAS  Google Scholar 

  • Kida H, Sugano Y, Iizuka R, Fujihashi M, Yohda M, Miki K (2008) Structural and molecular characterization of the prefoldin β subunit from Thermococcus strain KS-1. J Mol Biol 383:465–474

    Article  CAS  Google Scholar 

  • Laksanalamai P, Whitehead TA, Robb FT (2004) Minimal protein-folding systems in hyperthermophilic archaea. Nat Rev Microbiol 2:315–324

    Article  CAS  Google Scholar 

  • Leroux MR (2001) Protein folding and molecular chaperones in archaea. Adv Appl Microbiol 50:219–277

    Article  CAS  Google Scholar 

  • Leroux MR, Fandrich M, Klunker D, Siegers K, Lupas AN, Brown JR, Schiebel E, Dobson CM, Hartl FU (1999) MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18:6730–6743

    Article  CAS  Google Scholar 

  • Lundin VF, Stirling PC, Gomez-Reino J, Mwenifumbo JC, Obst JM, Valpuesta JM, Leroux MR (2004) Molecular clamp mechanism of substrate binding by hydrophobic coiled-coil residues of the archaeal chaperone prefoldin. Proc Natl Acad Sci U S A 101:4367–4372

    Article  CAS  Google Scholar 

  • Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA, Bartolini F, Cowan NJ, Valpuesta JM (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21:6377–6386

    Article  CAS  Google Scholar 

  • Martin-Benito J, Gomez-Reino J, Stirling PC, Lundin VF, Gomez-Puertas P, Boskovic J, Chacon P, Fernandez JJ, Berenguer J, Leroux MR, Valpuesta JM (2007) Divergent substrate-binding mechanisms reveal an evolutionary specialization of eukaryotic prefoldin compared to its archaeal counterpart. Structure 15:101–110

    Article  CAS  Google Scholar 

  • Nishihara K, Kanemori M, Yanagi H, Yura T (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889

    Article  CAS  Google Scholar 

  • Ohtaki A, Kida H, Miyata Y, Ide N, Yonezawa A, Arakawa T, Iizuka R, Noguchi K, Kita A, Odaka M, Miki K, Yohda M (2008) Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins. J Mol Biol 376:1130–1141

    Article  CAS  Google Scholar 

  • Ohtaki A, Noguchi K, Yohda M (2010) Structure and function of archaeal prefoldin, a co-chaperone of group II chaperonin. Front Biosci 15:108–117

    Article  Google Scholar 

  • Okochi M, Nomura T, Zako T, Arakawa T, Iizuka R, Ueda H, Funatsu T, Leroux M, Yohda M (2004) Kinetics and binding sites for interaction of the prefoldin with a group II chaperonin: contiguous non-native substrate and chaperonin binding sites in the archaeal prefoldin. J Biol Chem 279:31788–31795

    Article  CAS  Google Scholar 

  • Okochi M, Kanie K, Kurimoto M, Yohda M, Honda H (2008) Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance. Appl Microbiol Biotechnol 79:443–449

    Article  CAS  Google Scholar 

  • Peng S, Chu Z, Lu J, Li D, Wang Y, Yang S, Zhang Y (2016) Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli. Cell Stress Chaperones 21:477–484

    Article  CAS  Google Scholar 

  • Peng SY, Chu ZM, Lu JF, Li DX, Wang YH, Yang SL, Zhang Y (2017) Co-expression of Prefoldin from Hyperthermophilic archaea Pyrococcus furiosus in Escherichia coli enhances the catalytic efficiency of modified cytochrome P450 BM3. Prog Biochem Biophys 44:1125–1131

    Google Scholar 

  • Sahlan M, Yohda M (2013) Molecular chaperones in thermophilic eubacteria and archaea. In: Satyanarayana T et al (eds) Thermophilic microbes in environmental and industrial biotechnology: biotechnology of thermophiles, vol 2E. Springer, Dordrecht, pp 375–394

    Chapter  Google Scholar 

  • Sahlan M, Zako T, Tai PT, Ohtaki A, Noguchi K, Maeda M, Miyatake H, Dohmae N, Yohda M (2010) Thermodynamic characterization of the interaction between prefoldin and group II chaperonin. J Mol Biol 399:628–636

    Article  CAS  Google Scholar 

  • Sahlan M, Zako T, Yohda M (2018) Prefoldin, a jellyfish-like molecular chaperone: functional cooperation with a group II chaperonin and beyond. Biophys Rev 10:339–345. https://doi.org/10.1007/s12551-018-0400-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakono M, Zako T, Drakulic S, Valpuesta JM, Yohda M, Maeda M (2010) Size-selective recognition of gold nanoparticles by a molecular chaperone. Chem Phys Lett 501:108–112

    Article  CAS  Google Scholar 

  • Sakono M, Zako T, Yohda M, Maeda M (2012) Amyloid oligomer detection by immobilized molecular chaperone. Biochem Eng J 61:28–33

    Article  CAS  Google Scholar 

  • Shockley KR, Ward DE, Chhabra SR, Conners SB, Montero CI, Kelly RM (2003) Heat shock response by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 69:2365–2371

    Article  CAS  Google Scholar 

  • Shokuhfar A, Ghaffari A, Ghasemi RH (2012) Cavity control of Prefoldin nano actuator (PNA) by temperature and pH. Nano-Micro Lett 4:110–117

    Article  CAS  Google Scholar 

  • Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unque interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621–632

    Article  CAS  Google Scholar 

  • Simons CT, Staes A, Rommelaere H, Ampe C, Lewis SA, Cowan NJ (2004) Selective contribution of eukaryotic prefoldin subunits to actin and tubulin binding. J Biol Chem 279:4196–4203

    Article  CAS  Google Scholar 

  • Slocik JM, Kim SN, Whitehead TA, Clark DS, Naik RR (2009) Biotemplated metal nanowires using hyperthermophilic protein filaments. Small 5:2038–2042

    Article  CAS  Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873

    Article  CAS  Google Scholar 

  • Wall JG, Pluckthun A (1995) Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:507–516

    Article  CAS  Google Scholar 

  • Whitehead TA, Boonyaratanakornkit BB, Hollrigl V, Clark DS (2007) A filamentous molecular chaperone of the prefoldin family from the deep-sea hyperthermophile Methanocaldococcus jannaschii. Protein Sci 16:626–634

    Article  CAS  Google Scholar 

  • Whitehead TA, Meadows AL, Clark DS (2008) Controlling the self-assembly of a filamentous hyperthermophilic chaperone by an engineered capping protein. Small 4:956–960

    Article  CAS  Google Scholar 

  • Whitehead TA, Je E, Clark DS (2009) Rational shape engineering of the filamentous protein gamma prefoldin through incremental gene truncation. Biopolymers 91:496–503

    Article  CAS  Google Scholar 

  • Yan X, Hu S, Guan YX, Yao SJ (2012) Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli. Appl Microbiol Biotechnol 93:1065–1074

    Article  CAS  Google Scholar 

  • Zako T, Maeda M (2014) Application of biomaterials for the detection of amyloid aggregates. Biomater Sci 2:951–955

    Article  CAS  Google Scholar 

  • Zako T, Iizuka R, Okochi M, Nomura T, Ueno T, Tadakuma H, Yohda M, Funatsu T (2005) Facilitated release of substrate protein from prefoldin by chaperonin. FEBS Lett 579:3718–3724

    Article  CAS  Google Scholar 

  • Zako T, Murase Y, Iizuka R, Yoshida T, Kanzaki T, Ide N, Maeda M, Funatsu T, Yohda M (2006) Localization of prefoldin interaction sites in the hyperthermophilic group II chaperonin and correlations between binding rate and protein transfer rate. J Mol Biol 364:110–120

    Article  CAS  Google Scholar 

  • Zhang J, Baker ML, Schroder GF, Douglas NR, Reissmann S, Jakana J, Dougherty M, Fu CJ, Levitt M, Ludtke SJ, Frydman J, Chiu W (2010) Mechanism of folding chamber closure in a group II chaperonin. Nature 463:379–383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (FA9550-17-1-0451). S.L. was supported by a National Science Foundation Graduate Research Fellowship (DGE1106400, DGE1752814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas S. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, S., Glover, D.J., Clark, D.S. (2018). Prefoldins in Archaea. In: Djouder, N. (eds) Prefoldins: the new chaperones. Advances in Experimental Medicine and Biology, vol 1106. Springer, Cham. https://doi.org/10.1007/978-3-030-00737-9_2

Download citation

Publish with us

Policies and ethics