Advertisement

Functional Contributions of Prefoldin to Gene Expression

  • Laura Payán-Bravo
  • Xenia Peñate
  • Sebastián ChávezEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1106)

Abstract

Prefoldin is a co-chaperone that evolutionarily originates in archaea, is universally present in all eukaryotes and acts as a co-chaperone by facilitating the supply of unfolded or partially folded substrates to class II chaperonins. Eukaryotic prefoldin is known mainly for its functional relevance in the cytoplasmic folding of actin and tubulin monomers during cytoskeleton assembly. However, the role of prefoldin in chaperonin-mediated folding is not restricted to cytoskeleton components, but extends to both the assembly of other cytoplasmic complexes and the maintenance of functional proteins by avoiding protein aggregation and facilitating proteolytic degradation. Evolution has favoured the diversification of prefoldin subunits, and has allowed the so-called prefoldin-like complex, with specialised functions, to appear. Subunits of both canonical and prefoldin-like complexes have also been found in the nucleus of yeast and metazoan cells, where they have been functionally connected with different gene expression steps. Plant prefoldin has also been detected in the nucleus and is physically associated with a gene regulator. Here we summarise information available on the functional involvement of prefoldin in gene expression, and discuss the implications of these results for the relationship between prefoldin structure and function.

Keywords

Prefoldin GimC Prefoldin-like complex URI UXT PDRG1 Gene expression RNA polymerase II Transcription elongation c-Myc MM-1 DELLA 

Notes

Acknowledgements

This work was supported by Grants from the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF): BFU2016-77728-C3-3-P. We also acknowledge the support from the Andalusian Government and ERDF (Grant P12-BIO-1938 MO). L.P.-B. is a recipient of an FPI contract from Junta de Andalucía. We thank Helen Warburton for editing the English.

References

  1. Abe A et al (2013) Prefoldin plays a role as a clearance factor in preventing proteasome inhibitor-induced protein aggregation. J Biol Chem 288(39):27764–27776CrossRefGoogle Scholar
  2. Amorim AF et al (2017) Absence of Gim proteins, but not GimC complex, alters stress-induced transcription. Biochim Biophys Acta 1860(7):773–781CrossRefGoogle Scholar
  3. Boulon S et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912–924CrossRefGoogle Scholar
  4. Cao S et al (2008) Subunit 1 of the prefoldin chaperone complex is required for lymphocyte development and function. J Immunol 181(1):476–484CrossRefGoogle Scholar
  5. Chang LS et al (2012) Epstein-Barr virus BGLF4 kinase downregulates NF-kappaB transactivation through phosphorylation of coactivator UXT. J Virol 86(22):12176–12186CrossRefGoogle Scholar
  6. Chávez S, Puerto-Camacho P (2016) Prefoldins. In eLS, John Wiley & Sons, Ltd (Ed.).  https://doi.org/10.1002/9780470015902.a0026334
  7. Chen S et al (2013) Regulation of the transcriptional activation of the androgen receptor by the UXT-binding protein VHL. Biochem J 456(1):55–66CrossRefGoogle Scholar
  8. Cloutier P et al (2017) R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 8:15615CrossRefGoogle Scholar
  9. Collins SR et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806–810CrossRefGoogle Scholar
  10. Comyn SA et al (2016) Prefoldin promotes proteasomal degradation of cytosolic proteins with missense mutations by maintaining substrate solubility. PLoS Genet 12(7):e1006184CrossRefGoogle Scholar
  11. Costanzo M et al (2010) The genetic landscape of a cell. Science 327(5964):425–431CrossRefGoogle Scholar
  12. Delgehyr N et al (2012) Drosophila Mgr, a prefoldin subunit cooperating with von Hippel Lindau to regulate tubulin stability. Proc Natl Acad Sci U S A 109(15):5729–5734CrossRefGoogle Scholar
  13. Delgermaa L et al (2004) Subcellular localization of RPB5-mediating protein and its putative functional partner. Mol Cell Biol 24(19):8556–8566CrossRefGoogle Scholar
  14. Djouder N et al (2007) S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 28(1):28–40CrossRefGoogle Scholar
  15. Dorjsuren D et al (1998) RMP, a novel RNA polymerase II subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol Cell Biol 18(12):7546–7555CrossRefGoogle Scholar
  16. Enunlu I, Ozansoy M, Basak AN (2011) Alfa-class prefoldin protein UXT is a novel interacting partner of Amyotrophic Lateral Sclerosis 2 (Als2) protein. Biochem Biophys Res Commun 413(3):471–475CrossRefGoogle Scholar
  17. Fandrich M et al (2000) Observation of the noncovalent assembly and disassembly pathways of the chaperone complex MtGimC by mass spectrometry. Proc Natl Acad Sci U S A 97(26):14151–14155CrossRefGoogle Scholar
  18. Fujioka Y et al (2001) MM-1, a c-Myc-binding protein, is a candidate for a tumor suppressor in leukemia/lymphoma and tongue cancer. J Biol Chem 276(48):45137–45144CrossRefGoogle Scholar
  19. Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17(4):952–966CrossRefGoogle Scholar
  20. Gottesfeld JM, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22(6):197–202CrossRefGoogle Scholar
  21. Gstaiger M et al (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302(5648):1208–1212CrossRefGoogle Scholar
  22. Gu Y et al (2008) Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc Natl Acad Sci U S A 105(46):18064–18069CrossRefGoogle Scholar
  23. Hagio Y et al (2006) Distinct localizations and repression activities of MM-1 isoforms toward c-Myc. J Cell Biochem 97(1):145–155CrossRefGoogle Scholar
  24. Hennecke S et al (2015) Prevalence of the prefoldin subunit 5 gene deletion in canine mammary tumors. PLoS One 10(7):e0131280CrossRefGoogle Scholar
  25. Hintermair C et al (2016) Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci Rep 6:27401CrossRefGoogle Scholar
  26. Horejsi Z et al (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39(6):839–850CrossRefGoogle Scholar
  27. Kida H et al (2008) Structural and molecular characterization of the prefoldin beta subunit from Thermococcus strain KS-1. J Mol Biol 383(3):465–474CrossRefGoogle Scholar
  28. Kim SY et al (2008) Hepatitis B virus X protein enhances NFkappaB activity through cooperating with VBP1. BMB Rep 41(2):158–163CrossRefGoogle Scholar
  29. Kimura Y et al (2007) MM-1 facilitates degradation of c-Myc by recruiting proteasome and a novel ubiquitin E3 ligase. Int J Oncol 31(4):829–836PubMedGoogle Scholar
  30. Lee Y et al (2011) Prefoldin 5 is required for normal sensory and neuronal development in a murine model. J Biol Chem 286(1):726–736CrossRefGoogle Scholar
  31. Leroux MR (1999) MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18(23):6730–6743CrossRefGoogle Scholar
  32. Locascio A, Blazquez MA, Alabadi D (2013) Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction. Curr Biol 23(9):804–809CrossRefGoogle Scholar
  33. Lundin VF et al (2008) Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Dev Biol 313(1):320–334CrossRefGoogle Scholar
  34. Ma HC et al (2008) Hepatitis C virus ARFP/F protein interacts with cellular MM-1 protein and enhances the gene trans-activation activity of c-Myc. J Biomed Sci 15(4):417–425CrossRefGoogle Scholar
  35. Markus SM et al (2002) Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus. Mol Biol Cell 13(2):670–682CrossRefGoogle Scholar
  36. McGilvray R, Walker M, Bartholomew C (2007) UXT interacts with the transcriptional repressor protein EVI1 and suppresses cell transformation. FEBS J 274(15):3960–3971CrossRefGoogle Scholar
  37. Millan-Zambrano G et al (2013) The prefoldin complex regulates chromatin dynamics during transcription elongation. PLoS Genet 9(9):e1003776CrossRefGoogle Scholar
  38. Miron-Garcia MC et al (2013) The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet 9(2):e1003297CrossRefGoogle Scholar
  39. Miron-Garcia MC et al (2014) The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription. Nucleic Acids Res 42(15):9666–9676CrossRefGoogle Scholar
  40. Mita P et al (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One 8(5):e63879CrossRefGoogle Scholar
  41. Mita P et al (2016) URI regulates KAP1 phosphorylation and transcriptional repression via PP2A phosphatase in prostate cancer cells. J Biol Chem 291(49):25516–25528CrossRefGoogle Scholar
  42. Mori K et al (1998) MM-1, a novel c-Myc-associating protein that represses transcriptional activity of c-Myc. J Biol Chem 273(45):29794–29800CrossRefGoogle Scholar
  43. Mousnier A et al (2007) von Hippel Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step. Proc Natl Acad Sci U S A 104(34):13615–13620CrossRefGoogle Scholar
  44. Narita R et al (2012) Rabring7 degrades c-Myc through complex formation with MM-1. PLoS One 7(7):e41891CrossRefGoogle Scholar
  45. Pajares MA (2017) PDRG1 at the interface between intermediary metabolism and oncogenesis. World J Biol Chem 8(4):175–186CrossRefGoogle Scholar
  46. Perez C et al (2016) The oncogene PDRG1 Is an interaction target of methionine adenosyltransferases. PLoS One 11(8):e0161672CrossRefGoogle Scholar
  47. Rodriguez-Milla MA, Salinas J (2009) Prefoldins 3 and 5 play an essential role in Arabidopsis tolerance to salt stress. Mol Plant 2(3):526–534CrossRefGoogle Scholar
  48. Rommelaere H et al (2001) Prefoldin recognition motifs in the nonhomologous proteins of the actin and tubulin families. J Biol Chem 276(44):41023–41028CrossRefGoogle Scholar
  49. Sanchez-Morgan N et al (2017) UXT Is a LOX-PP interacting protein that modulates estrogen receptor alpha activity in breast cancer cells. J Cell Biochem 118(8):2347–2356CrossRefGoogle Scholar
  50. Satou A et al (2001) A novel transrepression pathway of c-Myc. Recruitment of a transcriptional corepressor complex to c-Myc by MM-1, a c-Myc-binding protein. J Biol Chem 276(49):46562–46567CrossRefGoogle Scholar
  51. Siegert R et al (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103(4):621–632CrossRefGoogle Scholar
  52. Sorgjerd KM et al (2013) Human prefoldin inhibits amyloid-beta (Abeta) fibrillation and contributes to formation of nontoxic Abeta aggregates. Biochemistry 52(20):3532–3542CrossRefGoogle Scholar
  53. Sun S et al (2007) UXT is a novel and essential cofactor in the NF-kappaB transcriptional enhanceosome. J Cell Biol 178(2):231–244CrossRefGoogle Scholar
  54. Takano M et al (2014) Prefoldin prevents aggregation of alpha-synuclein. Brain Res 1542:186–194CrossRefGoogle Scholar
  55. Taneja SS et al (2004) ART-27, an androgen receptor coactivator regulated in prostate development and cancer. J Biol Chem 279(14):13944–13952CrossRefGoogle Scholar
  56. Tashiro E et al (2013) Prefoldin protects neuronal cells from polyglutamine toxicity by preventing aggregation formation. J Biol Chem 288(27):19958–19972CrossRefGoogle Scholar
  57. Tummala KS et al (2014) Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26(6):826–839CrossRefGoogle Scholar
  58. Vainberg IE et al (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93(5):863–873CrossRefGoogle Scholar
  59. Vernekar DV, Bhargava P (2015) Yeast Bud27 modulates the biogenesis of Rpc128 and Rpc160 subunits and the assembly of RNA polymerase III. Biochim Biophys Acta 1849(11):1340–1353CrossRefGoogle Scholar
  60. Wang P et al (2015) PFDN1, an indicator for colorectal cancer prognosis, enhances tumor cell proliferation and motility through cytoskeletal reorganization. Med Oncol 32(12):264CrossRefGoogle Scholar
  61. Wang D et al (2017) Prefoldin 1 promotes EMT and lung cancer progression by suppressing cyclin A expression. Oncogene 36(7):885–898CrossRefGoogle Scholar
  62. Yamane T et al (2015) Deficiency of spermatogenesis and reduced expression of spermatogenesis-related genes in prefoldin 5-mutant mice. Biochem Biophys Rep 1:52–61PubMedPubMedCentralGoogle Scholar
  63. Yang J et al (2009) The single-macro domain protein LRP16 is an essential cofactor of androgen receptor. Endocr Relat Cancer 16(1):139–153CrossRefGoogle Scholar
  64. Yoshida T et al (2008) Negative regulation of the Wnt signal by MM-1 through inhibiting expression of the wnt4 gene. Exp Cell Res 314(6):1217–1228CrossRefGoogle Scholar
  65. Zhang Y et al (2016) Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation. Sci Rep 6:23735CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Laura Payán-Bravo
    • 1
    • 2
  • Xenia Peñate
    • 1
    • 2
  • Sebastián Chávez
    • 1
    • 2
    Email author
  1. 1.Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del RocíoSevilleSpain
  2. 2.Departamento de GenéticaUniversidad de SevillaSevilleSpain

Personalised recommendations