Skip to main content

Deep Domain Adaptation

  • Chapter
  • First Online:
Book cover Learning Representation for Multi-View Data Analysis

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Abstract

Learning with limited labeled data is always a challenge in AI problems, and one of promising ways is transferring well-established source domain knowledge to the target domain, i.e., domain adaptation. Recent researches on transfer learning exploit deep structures for discriminative feature representation to tackle cross-domain disparity. However, few of them are able to joint feature learning and knowledge transfer in a unified deep framework. In this chapter, we develop three novel deep domain adaptation approaches for knowledge transfer. First, we propose a Deep Low-Rank Coding framework (DLRC) for transfer learning. The core idea of DLRC is to jointly learn a deep structure of feature representation and transfer knowledge via an iterative structured low-rank constraint, which aims to deal with the mismatch between source and target domains layer by layer. Second, we propose a novel Deep Transfer Low-rank Coding (DTLC) framework to uncover more shared knowledge across source and target in a multi-layer manner. Specifically, we extend traditional low-rank coding with one dictionary to multi-layer dictionaries by jointly building multiple latent common dictionaries shared by two domains. Third, we propose a novel deep model called “Deep Adaptive Exemplar AutoEncoder”, where we build a spectral bisection tree to generate source-target data compositions as the training pairs fed to autoencoders, and impose a low-rank coding regularizer to ensure the transferability of the learned hidden layer.

This chapter is reprinted with permission from IJCAI. “ Deep Low-rank Coding for Transfer Learning”. International Joint Conference on Artificial Intelligence, pp. 3453–3459, 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://research.microsoft.com/en-us/projects/objectclassrecognition.

  2. 2.

    http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007.

  3. 3.

    http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

  4. 4.

    http://learn.tsinghua.edu.cn:8080/2011310560/mlong.html.

  5. 5.

    http://www-scf.usc.edu/~boqinggo/domainadaptation.html.

  6. 6.

    http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html.

  7. 7.

    http://yann.lecun.com/exdb/mnist.

  8. 8.

    http://research.microsoft.com/en-us/projects/objectclassrecognition/.

  9. 9.

    http://host.robots.ox.ac.uk/pascal/VOC/.

  10. 10.

    http://www.daviddlewis.com/resources/testcollections/reuters21578.

  11. 11.

    This chapter is reprinted with permission from AAAI. “Spectral Bisection Tree Guided Deep Adaptive Exemplar Autoencoder for Unsupervised Domain Adaptation”. 30th AAAI Conference on Artificial Intelligence, pp. 1181–1187, 2016.

  12. 12.

    http://research.microsoft.com/en-us/projects/objectclassrecognition/.

  13. 13.

    http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

  14. 14.

    http://www-scf.usc.edu/~boqinggo/domainadaptation.html.

References

  • Bahadori MT, Liu Y, Zhang D (2011) Learning with minimum supervision: a general framework for transductive transfer learning. In: IEEE ICDM. IEEE, pp 61–70

    Google Scholar 

  • Bartels RH, Stewart G (1972) Solution of the matrix equation ax + xb = c [f4]. Commun ACM 15(9):820–826

    Article  Google Scholar 

  • Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  Google Scholar 

  • Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: NIPS. MIT Press, Cambridge, pp 153–160

    Google Scholar 

  • Berry MW (1992) Large-scale sparse singular value computations. Int J Supercomput Appl 6(1):13–49

    Article  Google Scholar 

  • Bruzzone L, Marconcini M (2010) Domain adaptation problems: a dasvm classification technique and a circular validation strategy. IEEE Trans Pattern Anal Mach Intell 32(5):770–787

    Article  Google Scholar 

  • Cai J-F, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIOPT 20(4):1956–1982

    Article  MathSciNet  Google Scholar 

  • Chen M, Weinberger KQ, Sha F, Bengio Y (2014) Marginalized denoising auto-encoders for nonlinear representations. In: ICML, pp 1476–1484

    Google Scholar 

  • Chen M, Xu Z, Weinberger K, Sha F (2012) Marginalized denoising autoencoders for domain adaptation. In: ICML, pp 767–774

    Google Scholar 

  • Cui Z, Chang H, Shan S, Chen X (2014) Generalized unsupervised manifold alignment. In: NIPS, pp 2429–2437

    Google Scholar 

  • Ding Z, Fu Y (2014) Low-rank common subspace for multi-view learning. In: ICDM, pp 110–119

    Google Scholar 

  • Ding Z, Nasrabadi NM, Fu Y (2016) Task-driven deep transfer learning for image classification. In: 2016 IEEE international conference on acoustics, speech and signal processing. IEEE, pp 2414–2418

    Google Scholar 

  • Ding Z, Shao M, Fu Y (2014) Latent low-rank transfer subspace learning for missing modality recognition. In: AAAI

    Google Scholar 

  • Ding Z, Shao M, Fu Y (2015) Deep low-rank coding for transfer learning. In: Proceedings of the 24th international conference on artificial intelligence. AAAI Press, pp 3453–3459

    Google Scholar 

  • Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: Proceedings of The 31st international conference on machine learning, pp 647–655

    Google Scholar 

  • Duan L, Xu D, Tsang IW (2012) Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Trans Neural Netw Learn Syst 23(3):504–518

    Article  Google Scholar 

  • Erhan D, Manzagol P-A, Bengio Y, Bengio S, Vincent P (2009) The difficulty of training deep architectures and the effect of unsupervised pre-training. In: AISTATS, pp 153–160

    Google Scholar 

  • Fernando B, Habrard A, Sebban M, Tuytelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. In: ICCV, pp 2960–2967

    Google Scholar 

  • Fernando B, Habrard A, Sebban M, Tuytelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. In: IEEE ICCV. IEEE, pp 2960–2967

    Google Scholar 

  • Gao J, Fan W, Jiang J, Han J (2008) Knowledge transfer via multiple model local structure mapping. In: KDD, pp 283–291

    Google Scholar 

  • Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-scale sentiment classification: a deep learning approach. In: ICML, pp 513–520

    Google Scholar 

  • Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, pp 2066–2073

    Google Scholar 

  • Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: IEEE CVPR. IEEE, pp 2066–2073

    Google Scholar 

  • Gopalan R, Li R, Chellappa R (2011) Domain adaptation for object recognition: an unsupervised approach. In: ICCV, pp 999–1006

    Google Scholar 

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  • Hu J, Lu J, Tan Y-P (2015) Deep transfer metric learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 325–333

    Google Scholar 

  • LeCun YA, Bottou L, Orr GB, Müller K-R (2012) Efficient backprop. Neural networks: tricks of the trade. Springer, Berlin, pp 9–48

    Google Scholar 

  • Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055

  • Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. TPAMI 35(1):171–184

    Article  Google Scholar 

  • Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE TPAMI 35(1):171–184

    Article  Google Scholar 

  • Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th international conference on machine learning, pp 663–670

    Google Scholar 

  • Long M, Wang J, Ding G, Pan SJ et al (2014) Adaptation regularization: a general framework for transfer learning. TKDE 26(5):1076–1089

    Google Scholar 

  • Long M, Wang J, Ding G, Shen D, Yang Q (2014) Transfer learning with graph co-regularization. IEEE TKDE 26(7):1805–1818

    Google Scholar 

  • Long M, Wang J, Ding G, Shen D, Yang Q (2014) Transfer learning with graph co-regularization. TKDE 26(7):1805–1818

    Google Scholar 

  • Long M, Ding G, Wang J, Sun J, Guo Y, Yu P (2013) Transfer sparse coding for robust image representation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 407–414

    Google Scholar 

  • Long M, Ding G, Wang J, Sun J, Guo Y, Yu PS (2013) Transfer sparse coding for robust image representation. In: CVPR, pp 407–414

    Google Scholar 

  • Long M, Ding G, Wang J, Sun J, Guo Y, Yu PS (2013) Transfer sparse coding for robust image representation. In: IEEE CVPR. IEEE, pp 407–414

    Google Scholar 

  • Long M, Wang J, Ding G, Sun J, Yu PS (2013) Transfer feature learning with joint distribution adaptation. In: IEEE international conference on computer vision

    Google Scholar 

  • Malo J, Epifanio I, Navarro R, Simoncelli EP (2006) Nonlinear image representation for efficient perceptual coding. IEEE Trans Image Process 15(1):68–80

    Article  Google Scholar 

  • Mesnil G, Dauphin Y, Glorot X, Rifai S, Bengio Y, Goodfellow IJ, Lavoie E, Muller X, Desjardins G, Warde-Farley D et al (2012) Unsupervised and transfer learning challenge: a deep learning approach. ICML Transfer Learning Workshop 27:97–110

    Google Scholar 

  • Nguyen HV, Ho HT, Patel VM, Chellappa R (2013) Joint hierarchical domain adaptation and feature learning. In: TPAMI

    Google Scholar 

  • Ni J, Qiu Q, Chellappa R (2013) Subspace interpolation via dictionary learning for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 692–699

    Google Scholar 

  • Nocedal J (1980) Updating quasi-newton matrices with limited storage. Math Comput 35(151):773–782

    Article  MathSciNet  Google Scholar 

  • Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE TKDE 22(10):1345–1359

    Google Scholar 

  • Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. TNN 22(2):199–210

    Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2(11):1019–1025

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. Cognit Model 5:696–699

    MATH  Google Scholar 

  • Shao M, Kit D, Fu Y (2014) Generalized transfer subspace learning through low-rank constraint. Int J Comput Vis 109(1–2):74–93

    Article  MathSciNet  Google Scholar 

  • Shao M, Ding Z, Zhao H, Fu Y (2016) Spectral bisection tree guided deep adaptive exemplar autoencoder for unsupervised domain adaptation. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. AAAI Press, pp 2023–2029

    Google Scholar 

  • Shao M, Kit D, Fu Y (2014) Generalized transfer subspace learning through low-rank constraint. In: IJCV, pp 1–20

    Google Scholar 

  • Shekhar S, Patel VM, Nguyen HV, Chellappa R (2013) Generalized domain-adaptive dictionaries. In: CVPR, pp 361–368

    Google Scholar 

  • Shekhar S, Patel V, Nguyen H, Chellappa R (2013) Generalized domain-adaptive dictionaries. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 361–368

    Google Scholar 

  • Si S, Tao D, Geng B (2010) Bregman divergence-based regularization for transfer subspace learning. IEEE TKDE 22(7):929–942

    Google Scholar 

  • Wang W, Arora R, Livescu K, Bilmes J (2015) On deep multi-view representation learning. In: Proceedings of the 32nd international conference on machine learning, pp 1083–1092

    Google Scholar 

  • Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems, pp 3320–3328

    Google Scholar 

  • Zhang T, Ghanem B, Liu S, Xu C, Ahuja N (2013) Low-rank sparse coding for image classification. In: Proceedings of the IEEE international conference on computer vision, pp 281–288

    Google Scholar 

  • Zhang Y, Jiang Z, Davis LS (2013) Learning structured low-rank representations for image classification. In: CVPR, pp 676–683

    Google Scholar 

  • Zhang Q, Li B (2010) Discriminative k-svd for dictionary learning in face recognition. In: 2010 IEEE conference on computer vision and pattern recognition, pp 2691–2698

    Google Scholar 

  • Zhou JT, Pan SJ, Tsang IW, Yan Y (2014) Hybrid heterogeneous transfer learning through deep learning. In: AAAI, pp 2213–2220

    Google Scholar 

  • Zhuang F, Luo P, Xiong H, He Q, Xiong Y, Shi Z (2011) Exploiting associations between word clusters and document classes for cross-domain text categorization? Stat Anal Data Min ASA Data Sci J 4(1):100–114

    Article  MathSciNet  Google Scholar 

  • Zhuang F, Cheng X, Luo P, Pan SJ, He Q (2015) Supervised representation learning: transfer learning with deep autoencoders. In: Proceedings of the 24th international conference on artificial intelligence, pp 4119–4125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengming Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, Z., Zhao, H., Fu, Y. (2019). Deep Domain Adaptation. In: Learning Representation for Multi-View Data Analysis. Advanced Information and Knowledge Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-00734-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00734-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00733-1

  • Online ISBN: 978-3-030-00734-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics