Skip to main content

Monoclonal Antibodies in Cancer

  • Chapter
  • First Online:
Pharmaceutical Biotechnology
  • 115k Accesses

Abstract

The development of hybridoma technology by Kohler and Milstein 1975 was a milestone in the development of monoclonal antibody technology. It was possible now, to generate unique, uniform monoclonal antibodies (MABs) with a defined specificity and a reproducible quality. In 1979 the first patient was treated with a therapeutic MAB, which had until then only been used as diagnostic tools. In this chapter, the different classes and characteristics of MABs used as cancer therapeutics are described. Safety aspects of selected antibodies are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsaab HO et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for Cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Altundag K et al (2005) Re: cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst 97(23):1791–1792

    Article  PubMed  Google Scholar 

  • Anolik JH et al (2003) The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48(2):455–459

    Article  CAS  PubMed  Google Scholar 

  • Baselga J et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119

    Article  CAS  PubMed  Google Scholar 

  • Beers SA et al (2010) CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 47(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Berg EA, Platts-Mills TA, Commins SP (2014) Drug allergens and food--the cetuximab and galactose-alpha-1,3-galactose story. Ann Allergy Asthma Immunol 112(2):97–101

    Article  CAS  PubMed  Google Scholar 

  • Berinstein NL et al (1998) Association of serum rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol 9(9):995–1001

    Article  CAS  PubMed  Google Scholar 

  • Bokemeyer C et al (2012) Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 48(10):1466–1475

    Article  CAS  PubMed  Google Scholar 

  • Brule SY et al (2015) Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in NCIC CO.17. Eur J Cancer 51(11):1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Bubien JK et al (1993) Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol 121(5):1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Burchardt A, Wienzek-Lischka S, Schoelz C, Hackstein H, Rummel M (2012) Plasma exchange (PE) therapy (rituximab apheresis) for rituximab (R) induced progressive multifocal Leukoencephalopathy (PML) in hematologic disorders. Onkologie:133

    Google Scholar 

  • Buza N, Roque DM, Santin AD (2014) HER2/neu in endometrial Cancer: a promising therapeutic target with diagnostic challenges. Arch Pathol Lab Med 138(3):343–350

    Article  PubMed  Google Scholar 

  • Cartron G et al (2016) Rationale for optimal obinutuzumab/GA101 dosing regimen in B-cell non-Hodgkin lymphoma. Haematologica 101(2):226–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan HT et al (2003) CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res 63(17):5480–5489

    CAS  PubMed  Google Scholar 

  • Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Gammon D, Dutton TM, Piperdi B (2009) Panitumumab-related Hypomagnesemiain patients with colorectal Cancer. Hosp Pharm 44:234–238

    Article  Google Scholar 

  • Cheson BD (2010) Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol 28(21):3525–3530

    Article  CAS  PubMed  Google Scholar 

  • Chiosea SI et al (2015) Molecular characterization of apocrine salivary duct carcinoma. Am J Surg Pathol 39(6):744–752

    Article  PubMed  Google Scholar 

  • Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33(31):3541–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung CH et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins SM et al (2013) Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother 62(12):1841–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commins SP et al (2009) Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-alpha-1,3-galactose. J Allergy Clin Immunol 123(2):426–433

    Article  CAS  PubMed  Google Scholar 

  • Commins SP et al (2011) The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose. J Allergy Clin Immunol 127(5):1286–1293. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes J et al (2012) Pertuzumab monotherapy after trastuzumab-based treatment and subsequent reintroduction of trastuzumab: activity and tolerability in patients with advanced human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 30(14):1594–1600

    Article  CAS  PubMed  Google Scholar 

  • Cragg MS, Glennie MJ (2004) Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103(7):2738–2743

    Article  CAS  PubMed  Google Scholar 

  • Cragg MS et al (2003) Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 101(3):1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Cragg MS et al (2005) The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 8:140–174

    Article  CAS  PubMed  Google Scholar 

  • Davies M, Duffield EA (2017) Safety of checkpoint inhibitors for cancer treatment: strategies for patient monitoring and management of immune-mediated adverse events. Immunotargets Ther 6:51–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Roock W et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762

    Article  PubMed  CAS  Google Scholar 

  • de Weers M et al (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186(3):1840–1848

    Article  PubMed  CAS  Google Scholar 

  • Deaglio S, Mehta K, Malavasi F (2001) Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk Res 25(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Deans JP et al (1998) Rapid redistribution of CD20 to a low density detergent-insoluble membrane compartment. J Biol Chem 273(1):344–348

    Article  CAS  PubMed  Google Scholar 

  • English DP, Roque DM, Santin AD (2013) HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Mol Diagn Ther 17(2):85–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakih M (2008) Management of anti-EGFR-targeting monoclonal antibody-induced hypomagnesemia. Oncology (Williston Park) 22(1):74–76

    Google Scholar 

  • Fakih MG, Wilding G, Lombardo J (2006) Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer 6(2):152–156

    Article  CAS  PubMed  Google Scholar 

  • FDA (2017) FDA approves mylotarg for treatment of acute myeloid leukemia. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574507.htm

  • Ferris R (2013) PD-1 targeting in cancer immunotherapy. Cancer 119(23):E1–E3

    Article  CAS  PubMed  Google Scholar 

  • Gordan LN et al (2005) Phase II trial of individualized rituximab dosing for patients with CD20-positive lymphoproliferative disorders. J Clin Oncol 23(6):1096–1102

    Article  CAS  PubMed  Google Scholar 

  • Guo H et al (2015) Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells. Mol Cell Biol 35(1):41–51

    Article  PubMed  CAS  Google Scholar 

  • Gutzmer R et al (2011) Management of cutaneous side effects of EGFR inhibitors: recommendations from a German expert panel for the primary treating physician. J Dtsch Dermatol Ges 9(3):195–203

    PubMed  Google Scholar 

  • Haanen JB, Thienen H, Blank CU (2015) Toxicity patterns with immunomodulating antibodies and their combinations. Semin Oncol 42(3):423–428

    Article  CAS  PubMed  Google Scholar 

  • Han TH, Zhao B (2014) Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates. Drug Metab Dispos 42(11):1914–1920

    Article  PubMed  CAS  Google Scholar 

  • Herold M, Schnohr S, Bittrich H (2001) Efficacy and safety of a combined rituximab chemotherapy during pregnancy. J Clin Oncol 19(14):3439

    Article  CAS  PubMed  Google Scholar 

  • Hofheinz RD et al (2016) Recommendations for the prophylactic management of skin reactions induced by epidermal growth factor receptor inhibitors in patients with solid tumors. Oncologist 21(12):1483–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holcmann M, Sibilia M (2015) Mechanisms underlying skin disorders induced by EGFR inhibitors. Mol Cell Oncol 2(4):e1004969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsi ED et al (2008) CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 14(9):2775–2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huhn D et al (2001) Rituximab therapy of patients with B-cell chronic lymphocytic leukemia. Blood 98(5):1326–1331

    Article  CAS  PubMed  Google Scholar 

  • Hutson TE et al (2008) Targeted therapies for metastatic renal cell carcinoma: an overview of toxicity and dosing strategies. Oncologist 13(10):1084–1096

    Article  CAS  PubMed  Google Scholar 

  • Intlekofer AM, Thompson CB (2013) At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol 94(1):25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi K et al (2001) Identification of a new multigene four-transmembrane family (MS4A) related to CD20, HTm4 and beta subunit of the high-affinity IgE receptor. Gene 264(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Ivanov A et al (2008) Radiation therapy with tositumomab (B1) anti-CD20 monoclonal antibody initiates extracellular signal-regulated kinase/mitogen-activated protein kinase-dependent cell death that overcomes resistance to apoptosis. Clin Cancer Res 14(15):4925–4934

    Article  CAS  PubMed  Google Scholar 

  • Izzedine H et al (2010) Electrolyte disorders related to EGFR-targeting drugs. Crit Rev Oncol Hematol 73(3):213–219

    Article  PubMed  Google Scholar 

  • Kanzaki M et al (1995) Expression of calcium-permeable cation channel CD20 accelerates progression through the G1 phase in Balb/c 3T3 cells. J Biol Chem 270(22):13099–13104

    Article  CAS  PubMed  Google Scholar 

  • Keizer RJ et al (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49(8):493–507

    Article  CAS  PubMed  Google Scholar 

  • Klein C et al (2013) Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs 5(1):22–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacouture ME et al (2011) Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support Care Cancer 19(8):1079–1095

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2003) Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem 278(43):42427–42434

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2016) A mini-review for Cancer immunotherapy: molecular understanding of PD-1/PD-L1 pathway & translational blockade of immune checkpoints. Int J Mol Sci 17(7):E1151

    Article  PubMed  CAS  Google Scholar 

  • Lin P et al (2004) Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol 121(4):482–488

    Article  PubMed  Google Scholar 

  • Ludwig DL et al (2003) Monoclonal antibody therapeutics and apoptosis. Oncogene 22(56):9097–9106

    Article  CAS  PubMed  Google Scholar 

  • Malavasi F et al (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88(3):841–886

    Article  CAS  PubMed  Google Scholar 

  • Malavasi F et al (2011) CD38 and chronic lymphocytic leukemia: a decade later. Blood 118(13):3470–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maloney DG et al (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84(8):2457–2466

    CAS  PubMed  Google Scholar 

  • Maloney DG et al (1997) IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90(6):2188–2195

    CAS  PubMed  Google Scholar 

  • Manches O et al (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101(3):949–954

    Article  CAS  PubMed  Google Scholar 

  • Mariotte D et al (2011) Anti-cetuximab IgE ELISA for identification of patients at a high risk of cetuximab-induced anaphylaxis. MAbs 3(4):396–401

    Article  PubMed  PubMed Central  Google Scholar 

  • McLaughlin P et al (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16(8):2825–2833

    Article  CAS  PubMed  Google Scholar 

  • Mellor JD et al (2013) A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol 6:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morschhauser FA et al (2013) Obinutuzumab (GA101) monotherapy in relapsed/refractory diffuse large b-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. J Clin Oncol 31(23):2912–2919

    Article  CAS  PubMed  Google Scholar 

  • Mossner E et al (2010) Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115(22):4393–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller C et al (2012) The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood 119(14):3276–3284

    Article  PubMed  CAS  Google Scholar 

  • Nadler LM et al (1981) A unique cell surface antigen identifying lymphoid malignancies of B cell origin. J Clin Invest 67(1):134–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Cancer Institute 2014 FDA approval for tositumomab and iodine I 131 tositumomab. Internet: https://www.cancer.gov/about-cancer/treatment/drugs/fda-tositumomab-I131iodine-tositumomab

  • Negro A, Brar BK, Lee KF (2004) Essential roles of Her2/erbB2 in cardiac development and function. Recent Prog Horm Res 59:1–12

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DT et al (1999) IDEC-C2B8 anti-CD20 (rituximab) immunotherapy in patients with low-grade non-Hodgkin’s lymphoma and lymphoproliferative disorders: evaluation of response on 48 patients. Eur J Haematol 62(2):76–82

    Article  CAS  PubMed  Google Scholar 

  • Niederfellner G et al (2011) Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 118(2):358–367

    Article  CAS  PubMed  Google Scholar 

  • O’Brien SM et al (2001) Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol 19(8):2165–2170

    Article  PubMed  Google Scholar 

  • Ohta Y et al (1996) Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 2(8):1411–1416

    CAS  PubMed  Google Scholar 

  • Overdijk MB et al (2015) Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 7(2):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfreundschuh M, Zeynalova S, Poeschel V, Haenel M, Schmitz N, Hensel M, Reiser M, Loeffler M, Schubert J (2007) Dose-dense rituximab improves outcome of elderly patients with poor-prognosis diffuse large B-cell lymphoma (DLBCL): results of the DENSE-R-CHOP-14 trial of the German high-grade non-Hodgkin lymphoma study group (DSHNHL). Blood 110(11):789

    Google Scholar 

  • Pfreundschuh M et al (2014) Suboptimal dosing of rituximab in male and female patients with DLBCL. Blood 123(5):640–646

    Article  CAS  PubMed  Google Scholar 

  • Polyak MJ, Deans JP (2002) Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure. Blood 99(9):3256–3262

    Article  CAS  PubMed  Google Scholar 

  • Polyak MJ et al (2008) CD20 homo-oligomers physically associate with the B cell antigen receptor. Dissociation upon receptor engagement and recruitment of phosphoproteins and calmodulin-binding proteins. J Biol Chem 283(27):18545–18552

    Article  CAS  PubMed  Google Scholar 

  • Potthoff K et al (2011) Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion. Ann Oncol 22(3):524–535

    Article  CAS  PubMed  Google Scholar 

  • Quartier P et al (2001) Treatment of childhood autoimmune haemolytic anaemia with rituximab. Lancet 358(9292):1511–1513

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan SV et al (2017) Elotuzumab as a novel anti-myeloma immunotherapy. Hum Vaccin Immunother 13(8):1751–1757

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotte A, Jin JY, Lemaire V (2018) Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann Oncol 29(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Rubin I, Yarden Y (2001) The basic biology of HER2. Ann Oncol 12(Suppl 1):S3–S8

    Article  PubMed  Google Scholar 

  • Saleh H et al (2012) Anaphylactic reactions to oligosaccharides in red meat: a syndrome in evolution. Clin Mol Allergy 10(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santin AD et al (2008) Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet 102(2):128–131

    Article  CAS  PubMed  Google Scholar 

  • Santonocito AM et al (2004) Flow cytometric detection of aneuploid CD38(++) plasmacells and CD19(+) B-lymphocytes in bone marrow, peripheral blood and PBSC harvest in multiple myeloma patients. Leuk Res 28(5):469–477

    Article  PubMed  Google Scholar 

  • Schlingmann KP et al (2007) TRPM6 and TRPM7—gatekeepers of human magnesium metabolism. Biochim Biophys Acta 1772(8):813–821

    Article  CAS  PubMed  Google Scholar 

  • Schneider MR, Wolf E (2009) The epidermal growth factor receptor ligands at a glance. J Cell Physiol 218(3):460–466

    Article  CAS  PubMed  Google Scholar 

  • Schrag D et al (2005) Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst 97(16):1221–1224

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Carpenter G, Coffey RJ 2016 EGF receptor ligands: recent advances. F1000Res 5. https://doi.org/10.12688/f1000research.9025.1

    Article  CAS  Google Scholar 

  • Stashenko P et al (1980) Characterization of a human B lymphocyte-specific antigen. J Immunol 125(4):1678–1685

    CAS  PubMed  Google Scholar 

  • Steinke JW, Platts-Mills TA, Commins SP (2015) The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol 135(3):589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolz C, Schuler M (2009) Molecular mechanisms of resistance to rituximab and pharmacologic strategies for its circumvention. Leuk Lymphoma 50(6):873–885

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S et al (2016) Current status of immunotherapy. Jpn J Clin Oncol 46(3):191–203

    Article  PubMed  Google Scholar 

  • Tabernero J, Pfeiffer P, Cervantes A (2008) Administration of cetuximab every 2 weeks in the treatment of metastatic colorectal cancer: an effective, more convenient alternative to weekly administration? Oncologist 13(2):113–119

    Article  CAS  PubMed  Google Scholar 

  • Tedder TF, Engel P (1994) CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 15(9):450–454

    Article  CAS  PubMed  Google Scholar 

  • Tedder TF et al (1988) Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc Natl Acad Sci U S A 85(1):208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejpar S et al (2007) Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 8(5):387–394

    Article  CAS  PubMed  Google Scholar 

  • Tejpar S, et al. 2016 Prognostic and predictive relevance of primary tumor location in patients with RAS wild-type metastatic colorectal Cancer: retrospective analyses of the CRYSTAL and FIRE-3 trials. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2016.3797

    Article  PubMed  PubMed Central  Google Scholar 

  • Teplinsky E, Muggia F (2014) Targeting HER2 in ovarian and uterine cancers: challenges and future directions. Gynecol Oncol 135(2):364–370

    Article  CAS  PubMed  Google Scholar 

  • Tesfa D, Palmblad J (2011) Late-onset neutropenia following rituximab therapy: incidence, clinical features and possible mechanisms. Expert Rev Hematol 4(6):619–625

    Article  CAS  PubMed  Google Scholar 

  • Tesfa D et al (2011) Late-onset neutropenia following rituximab therapy in rheumatic diseases: association with B lymphocyte depletion and infections. Arthritis Rheum 63(8):2209–2214

    Article  CAS  PubMed  Google Scholar 

  • Tobinai K et al (2017) A review of Obinutuzumab (GA101), a novel type II anti-CD20 monoclonal antibody, for the treatment of patients with B-cell malignancies. Adv Ther 34(2):324–356

    Article  CAS  PubMed  Google Scholar 

  • Tuefferd M et al (2007) HER2 status in ovarian carcinomas: a multicenter GINECO study of 320 patients. PLoS One 2(11):e1138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Cutsem E et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29(15):2011–2019

    Article  PubMed  CAS  Google Scholar 

  • Van Cutsem E et al (2014) Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25 Suppl 3:iii1-9

    PubMed  Google Scholar 

  • Venook A, Niedzwiecki D, Innocenti F, Fruth B, Greene B, O’Neil BH, Shaw JE, Atkins JN, Horvath LE, Polite BN, Meyerhardt JA, O’Reilly EM, Goldberg RM, Hochster HS, Blanke CD, Schilsky RL, Mayer RJ, Bertagnolli MM, Lenz H-J (2016) Impact of primary (1°) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol 34:3504

    Article  Google Scholar 

  • Verheul HM, Pinedo HM (2007) Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 7(6):475–485

    Article  CAS  PubMed  Google Scholar 

  • Vesely MD et al (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  • Weber JS, Kahler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697

    Article  CAS  PubMed  Google Scholar 

  • Weber JS et al (2015) Toxicities of immunotherapy for the practitioner. J Clin Oncol 33(18):2092–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss L et al (2017) Influence of body mass index on survival in indolent and mantle cell lymphomas: analysis of the StiL NHL1 trial. Ann Hematol 96(7):1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng WK et al (2010) Immunoglobulin G Fc receptor FcgammaRIIIa 158 V/F polymorphism correlates with rituximab-induced neutropenia after autologous transplantation in patients with non-Hodgkin’s lymphoma. J Clin Oncol 28(2):279–284

    Article  CAS  PubMed  Google Scholar 

  • Widakowich C et al (2007) Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12(12):1443–1455

    Article  CAS  PubMed  Google Scholar 

  • Wolchok JD et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420

    Article  CAS  PubMed  Google Scholar 

  • Wolchok JD et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11(2):155–164

    Article  CAS  PubMed  Google Scholar 

  • Wolchok JD et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J et al (2015) Blinatumomab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J Hematol Oncol 8:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yildirim M et al (2015) The role of gender in patients with diffuse large B cell lymphoma treated with rituximab-containing regimens: a meta-analysis. Arch Med Sci 11(4):708–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YY et al (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273(17):10261–10269

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barth, J. (2019). Monoclonal Antibodies in Cancer. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-00710-2_23

Download citation

Publish with us

Policies and ethics