Skip to main content

Advanced Therapies: Clinical, Non-clinical and Quality Considerations

  • Chapter
  • First Online:
Book cover Pharmaceutical Biotechnology

Abstract

Cell therapy, tissue engineering, and gene therapy products, together called “advanced therapy medicinal products” (ATMPs), represent a heterogeneous group of innovative biopharmaceuticals. ATMPs are based on viable cells, tissue, or genetic material. In this chapter, after a brief introduction, first different classification systems of these products are discussed, illustrated with representative examples of products in clinical development or commercially available. Next, the challenges associated with successful pharmaceutical development, manufacturing, and testing of these products are covered. Finally, regulatory aspects are dealt with.

Parts of this chapter were taken from the fourth edition chapter 25 authored by Colin W. Pouton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  CAS  Google Scholar 

  • Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9:113–118

    Article  CAS  Google Scholar 

  • Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32(3):252–260

    Article  CAS  Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  CAS  Google Scholar 

  • Bravery CA (2015) Do human leukocyte antigen-typed cellular therapeutics based on induced pluripotent stem cells make commercial sense? Stem Cells Dev 24(1):1–10

    Article  Google Scholar 

  • Bravery CA, Carmen J, Fong T, Oprea W, Hoogendoorn KH, Woda J, Burger SR, Rowley JA, Bonyhadi ML, van’t Hof W (2013) Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy 15:9–19

    Article  Google Scholar 

  • Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28

    Article  CAS  Google Scholar 

  • Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Ibañez ND, López-Morales CA, Pérez NO, Flores-Ortiz LF, Medina-Rivero E (2015) Validation of three viable-cell counting methods: manual, semi-automated, and automated. Biotechnol Rep 7:9–16

    Article  Google Scholar 

  • Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    Article  CAS  Google Scholar 

  • Chin MH, Pellegrini M, Plath K, Lowry WE (2010) Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell 7:263–269

    Article  CAS  Google Scholar 

  • Consentius C, Reinke P, Volk H-D (2015) Immunogenicity of allogeneic mesenchymal stromal cells: what has been seen in vitro and in vivo? Regen Med 10(3):305–315

    Article  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  Google Scholar 

  • Fesnak AD, June CH, Levine BL (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nature 16:566–581

    CAS  Google Scholar 

  • Gombold J, Peden K, Gavin D, Wei Z, Baradaran K, Mire-Sluis A, Schenerman M (2006a) Lot release and characterization testing of live-virus-based vaccines and gene therapy products, part 1: factors influencing assay choices - WCBP CMC Forum. Bioprocess Int 46–54, April 2006

    Google Scholar 

  • Gombold J, Peden K, Gavin D, Wei Z, Baradaran K, Mire-Sluis A, Schenerman M (2006b) Lot release and characterization testing of live-virus-based vaccines and gene therapy products, part 2: case studies and discussion - WCBP CMC Forum Bioprocess Int 56–65, May 2006

    Google Scholar 

  • Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Scholer HR (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10:465–472

    Article  CAS  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  CAS  Google Scholar 

  • Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107:15921–15926

    Article  CAS  Google Scholar 

  • Hassan W, Dong Y, Wang W (2013) Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther 4(32):1–11

    Google Scholar 

  • Heathman T, Nienow AW, McCall MJ, Coppman K, Kara B, Hewitt CJ (2015) The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 10(1):49–64

    Article  CAS  Google Scholar 

  • Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29

    Article  Google Scholar 

  • Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J, Chen X, Liu C, Hu Y, Lai D, Hu Z, Chen L, Zhang Y, Cheng X, Ma X, Pan G, Wang X, Hui L (2011) Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14:370–384

    Article  Google Scholar 

  • Ilic D, Devito L, Miere C, Codognotto S (2015) Human embryonic and induced pluripotent stem cells in clinical trials. Br Med Bull 116:19–27

    PubMed  Google Scholar 

  • Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199

    Article  CAS  Google Scholar 

  • Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:732742

    Article  Google Scholar 

  • Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155

    Article  CAS  Google Scholar 

  • Kim YJ, Matsunaga YT (2017) Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B 5:4307–4321

    Article  CAS  Google Scholar 

  • Kimbrel EA, Lanza R (2015) Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 14:681–692

    Article  CAS  Google Scholar 

  • Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, Calof AL, Trumpp A, Oskarsson T (2012) What does the concept of the stem cell niche really mean today? BMC Biol 10:19

    Article  Google Scholar 

  • Landgren H, Curtis MA (2010) Locating and labeling neural stem cells in the brain. J Cell Physiol 226:1–7

    Article  Google Scholar 

  • Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systematically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7:1–12

    Google Scholar 

  • Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574

    Article  CAS  Google Scholar 

  • Levine BL, Miskin J, Wonnacott K, Keir C (2017) Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 4:92–101

    Article  CAS  Google Scholar 

  • Lui KO, Waldmann H, Fairchild PJ (2009) Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther 4:70–80

    Article  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent ell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad SCi USA 78:7634–7638

    Article  CAS  Google Scholar 

  • Morenweiser R (2005) Downstream processing of viral vectors and vaccines. Gene Ther 12:S103–S110

    Article  CAS  Google Scholar 

  • Mount NM, Ward SJ, Kefalas P, Hyllner J (2015) Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond B Biol Sci 370:1–16

    Article  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  CAS  Google Scholar 

  • Pedersen RA, Macetti V, Mendjan S (2012) Synthetic organs for regenerative medicine. Cell Stem Cell 10:646–647

    Article  CAS  Google Scholar 

  • Pollock K, Stroemer P, Patel S, Stevanato L, Hope A, Miljan E, Dong Z, Hodges H, Price J, Sinden JD (2006) A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol 199:143–155

    Article  Google Scholar 

  • Santos GW (1983) History of bone marrow transplantation. Clin Haematol 12:611–639

    Article  CAS  Google Scholar 

  • Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12:520–530

    Article  CAS  Google Scholar 

  • Sayed N, Liu C, Wu JC (2016) Translation of human-induced pluripotent stem cells. J Am Coll Cardiol 67(18):2161–2176

    Article  Google Scholar 

  • Sayed N, Wong WT, Ospino F, Meng S, Lee J, Jha A, Dexheimer P, Aronow BJ, Cooke JP (2015) Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation 131:300–9

    Article  CAS  Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  Google Scholar 

  • Scott CT, DeFrancesco L (2016) Gene therapy’s out-of-body experience. Nat Biotechnol 34(6):600–607

    Article  CAS  Google Scholar 

  • Sharpe M, Mount N (2015) genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 8:337–350

    Article  CAS  Google Scholar 

  • Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11:213–222

    Article  CAS  Google Scholar 

  • Smith JA, Bravery CA, Hollander G, Brindley DA (2015) Regenerative medicine regulation: cell therapy, gene therapy and tissue engineering. In: Fundamentals of EU regulatory affairs, 7th edn. RAPS, Rockville

    Google Scholar 

  • Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848

    Article  Google Scholar 

  • Stevanato L, Corteling RL, Stroemer P, Hope A, Heward J, Miljan EA, Sinden JD (2009) c-MycERTAM transgene silencing in a genetically modified human neural stem cell line implanted into MCAo rodent brain. BMC Neurosci 10:86

    Article  Google Scholar 

  • Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105:2631–2639

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  • Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K (2010) Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7:329–342

    Article  CAS  Google Scholar 

  • Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory P et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910

    Article  CAS  Google Scholar 

  • Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10:473–479

    Article  CAS  Google Scholar 

  • Thomas RJ, Anderson D, Chandra A, Smith NM, Young LE, Williams D, Denning C (2009) Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng 102:1636–1644

    Article  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  • Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22

    Article  CAS  Google Scholar 

  • Vestergaard HT, D’Apote L, Schneider CK, Herberts C (2013) The evolution of nonclinical regulatory science: advanced therapy medicinal products as a paradigm. Mol Ther 21(9):644–1647

    Article  Google Scholar 

  • Wegst UGK, Bai H, Saiz E, Tomsia AP, Richie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36

    Article  CAS  Google Scholar 

  • Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105:5856–5861

    Article  CAS  Google Scholar 

  • Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA, Wells DN, Young LE (2002) Somatic cell nuclear transfer. Nature 419:583–586

    Article  CAS  Google Scholar 

  • Wilmut I, Sullivan G, Taylor J (2009) A decade of progress since the birth of Dolly. Reprod Fertil Dev 21:95–100

    Article  CAS  Google Scholar 

  • Wright JF (2018) Manufacturing and characterization of AAV-based vectors for use in clinical studies. Gene Ther 15:840–848

    Article  Google Scholar 

  • Yang CS, Li Z, Rana TM (2011) microRNAs modulate iPS cell generation. RNA 17:1451–1460

    Article  CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  CAS  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  Google Scholar 

  • Yuan X, Wan H, Zhao X, Zhu S, Zhou Q, Ding S (2011) Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells 29:549–553

    Article  CAS  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  CAS  Google Scholar 

  • Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  CAS  Google Scholar 

Suggested Reading

  • BSI PAS 83:2012 (2012) Developing human cells for clinical applications in the Euopean Union and the United States of America – guide. Publicly Available Specification PAS83:2012, The British Standards Institution, ISBN 978 0 580 71052 0

    Google Scholar 

  • BSI PAS 84:2012 (2012) Cell therapy and regenerative medicine – glossary. Publicly Available Specification PAS84:2012, The British Standards Institution, ISBN 978 0 580 74904 9

    Google Scholar 

  • BSI PAS 93:2011 (2011) Characterization of human cells for clinical applications – guide. Publicly Available Specification PAS93:2011, The British Standards Institution, ISBN 978 0 580 69850 7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin H. Hoogendoorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoogendoorn, K.H. (2019). Advanced Therapies: Clinical, Non-clinical and Quality Considerations. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-00710-2_17

Download citation

Publish with us

Policies and ethics