• Alan LewisEmail author
Part of the Springer Theses book series (Springer Theses)


Electroluminescence is an important and much studied property of semiconducting films of conjugated organic polymers [1, 2, 3, 4], and is the basis of their commercial application in organic light emitting diodes (oLEDs) [5, 6, 7, 8]. These have the potential to be more efficient, more easily scalable, and more flexible than their inorganic counterparts [7, 9, 10]. oLEDs are constructed in four layers: a thin film of the semiconducting polymer is sandwiched between an electron-injecting metal cathode and a transparent hole-injecting layer, which is then covered by a transparent anode. Calcium and aluminium are commonly used for the cathode and indium tin oxide for the anode, with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) a typical hole-injecting layer [11, 12, 13, 14, 15]. In this chapter, we are concerned with the properties of the semiconducting polymer layer which affect the efficiency of electroluminescence.


Electroluminescence Semiconducting Polymer Polaron Pairs (PP) Optically Detected Magnetic Resonance (ODMR) Singlet Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burroughes, J. H. et al. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347, 539–541.Google Scholar
  2. 2.
    Yang, Y. (1997). Polymer electroluminescent devices. Materials Research Society Bulletin, 22, 31–38.CrossRefGoogle Scholar
  3. 3.
    Hoofman, R. J. O. M., de Haas, M. P., Siebbeles, L. D. A., & Warman, J. M. (1998). Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly (phenylene vinylene). Nature, 392, 54–56.CrossRefGoogle Scholar
  4. 4.
    Grozema, F. C. et al. (2002). Theoretical and experimental studies of the opto-electronic properties of positively charged oligo (phenylene vinylene)s: Effects of chain length and alkoxy substitution. Journal of Chemical Physics, 117, 11366.Google Scholar
  5. 5.
    Tang, C. W., & Vanslyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51, 913–915.CrossRefGoogle Scholar
  6. 6.
    Kido, J. (1999). Organic displays. Physics World, 12, 27–30.CrossRefGoogle Scholar
  7. 7.
    Forrest, S. R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428, 911–918.CrossRefGoogle Scholar
  8. 8.
    (2009). OLED displays and organic photovoltaics. Nature Photonics, 3, 457.Google Scholar
  9. 9.
    Lupton, J. M., McCamey, D. R., & Boehme, C. (2010). Coherent spin manipulation in molecular semiconductors: Getting a handle on organic spintronics. ChemPhysChem, 11, 3040–3058.CrossRefGoogle Scholar
  10. 10.
    Reineke, S. (2015). Complementary LED technologies. Nature Materials, 14, 459–462.CrossRefGoogle Scholar
  11. 11.
    Leger, J. M., Carter, S. A., Ruhstaller, B., Scherf, U., & Tillman, H. (2003). Thickness-dependent changes in the optical properties of PPV- and PF-based polymer light emitting diodes. Physical Review B, 68, 054209.CrossRefGoogle Scholar
  12. 12.
    McCamey, D. R. et al. (2010). Hyperfine-field-mediated spin beating in electrostatically bound charge carrier pairs. Physical Review Letters, 104, 017601.Google Scholar
  13. 13.
    Nguyen, T. D., Gautam, B. R., Ehrenfreund, E., & Vardeny, Z. V. (2010). Magnetoconductance response in unipolar and bipolar organic diodes at ultrasmall fields. Physical Review Letters, 105, 166804.CrossRefGoogle Scholar
  14. 14.
    Nguyen, T. D. et al. (2010). Isotope effect in spin response of pi-conjugated polymer films and devices. Nature Materials, 9, 345–352.Google Scholar
  15. 15.
    Janssen, P. et al. (2011). On the role of minority carriers in the frequency dependence of organic magnetoresistance. Synthetic Metals, 161, 617–621.Google Scholar
  16. 16.
    Ehrenfreund, E., & Vardeny, Z. V. (2012). Effects of magnetic field on conductance and electroluminescence in organic devices. Israel Journal of Chemistry, 52, 552–562.CrossRefGoogle Scholar
  17. 17.
    Kersten, S. P., Schellekens, A. J., Koopmans, B., & Bobbert, P. A. (2011). Magnetic-field dependence of the electroluminescence of organic light-emitting diodes: A competition between exciton formation and spin mixing. Physical Review Letters, 106, 197402.CrossRefGoogle Scholar
  18. 18.
    McCamey, D. R., Lee, S. Y., Paik, S. Y., Lupton, J. M., & Boehme, C. (2010). Spin-dependent dynamics of polaron pairs in organic semiconductors. Physical Review B, 82, 125206.CrossRefGoogle Scholar
  19. 19.
    Wang, F., Yang, C. G., Ehrenfreund, E., & Vardeny, Z. V. (2010). Spin dependent reactions of polaron pairs in PPV-based organic diodes. Synthetic Metals, 160, 297–302.CrossRefGoogle Scholar
  20. 20.
    Landau, L. D. (1933). Über die Bewegung der Elektronen im Kristallgitter. Physikalische Zeitschrift der Sowjetunion, 3, 664.Google Scholar
  21. 21.
    Tozer, O. R., & Barford, W. (2014). Localization of large polarons in the disordered Holstein model. Physical Review, 89, 155434.CrossRefGoogle Scholar
  22. 22.
    Marcus, M., Tozer, O. R., & Barford, W. (2014). Theory of optical transitions in conjugated polymers. II. Real systems. Journal of Chemical Physics, 141, 164102.CrossRefGoogle Scholar
  23. 23.
    Anderson, P. W. (1958). Absence of diffusion in certain random lattices. Physical Review, 109, 1492–1505.CrossRefGoogle Scholar
  24. 24.
    Mott, N. F., & Twose, W. (1961). The theory of impurity conduction. Advances in Physics, 10, 107.CrossRefGoogle Scholar
  25. 25.
    Hsu, J. W. P., Yan, M., Jedju, T. M., Rothberg, L. J., & Hsieh, B. R. (1994). Assignment of the picosecond photoinduced absorption in phenylene vinylene polymers. Physical Review B, 49, 712–715.CrossRefGoogle Scholar
  26. 26.
    Mizes, H. A., & Conwell, E. M. (1994). Photoinduced charge transfer in poly (p-phenylene vinylene). Physical Review B, 50, 243–246.CrossRefGoogle Scholar
  27. 27.
    Frankevich, E. L. et al. (1992). Polaron-pair generation in poly (phenylene vinylenes). Physical Review B, 46, 9320–9324.Google Scholar
  28. 28.
    Dyakonov, V., Röosler, G., Schwoerer, M., & Frankevich, E. L. (1997). Evidence for triplet interchain polaron pairs and their transformations in polyphenylenevinylene. Physical Review B, 56, 3852–3862.CrossRefGoogle Scholar
  29. 29.
    Barford, W. (2004). Theory of singlet exciton yield in light-emitting polymers. Physical Review B, 70, 205204.CrossRefGoogle Scholar
  30. 30.
    Hu, B., & Wu, Y. (2007). Tuning magnetoresistance between positive and negative values in organic semiconductors. Nature Materials, 6, 985–91.CrossRefGoogle Scholar
  31. 31.
    Bobbert, P. A., Nguyen, T. D., Van Oost, F. W. A., Koopmans, B., & Wohlgenannt, M. (2007). Bipolaron mechanism for organic magnetoresistance. Physical Review Letters, 99, 216801.CrossRefGoogle Scholar
  32. 32.
    Lupton, J. M., & Boehme, C. (2008). Magnetoresistance in organic semiconductors. Nature Materials, 7, 598.CrossRefGoogle Scholar
  33. 33.
    Cox, M. et al. (2014). Spectroscopic evidence for trap-dominated magnetic field effects in organic semiconductors. Physical Review B, 90, 155205.Google Scholar
  34. 34.
    Parmenter, R. H., & Ruppel, W. (1959). Two-carrier space-charge-limited current in a trap-free insulator. Journal of Applied Physics, 30, 1548–1558.CrossRefGoogle Scholar
  35. 35.
    Behrends, J. et al. (2010). Bipolaron formation in organic solar cells observed by pulsed electrically detected magnetic resonance. Physical Review Letters, 105, 176601.Google Scholar
  36. 36.
    Kuroda, S. et al. (2000). Spin distributions and excitation spectra of optically generated polarons in poly (p-phenylenevinylene) derivatives. Chemical Physics Letters, 325, 183–188.Google Scholar
  37. 37.
    Zezin, A. A., Feldman, V. I., Warman, J. M., Wildeman, J., & Hadziioannou, G. (2004). EPR study of positive holes on phenylene vinylene chains: From dimer to polymer. Chemical Physics Letters, 389, 108–112.CrossRefGoogle Scholar
  38. 38.
    Shimoi, Y., Abe, S., Kuroda, S.-I., & Murata, K. (1995). Polarons and their ENDOR spectra in poly (p-phenylene vinylene). Solid State Communications, 95, 137–141.CrossRefGoogle Scholar
  39. 39.
    Rosman, K. J. R., & Taylor, P. D. P. (1998). Isotopic compositions of the elements 1997. Pure and Applied Chemistry, 70, 217–235.CrossRefGoogle Scholar
  40. 40.
    Baker, W. J., Keevers, T. L., Lupton, J. M., McCamey, D. R., & Boehme, C. (2012). Slow hopping and spin dephasing of coulombically bound polaron pairs in an organic semiconductor at room temperature. Physical Review Letters, 108, 267601.CrossRefGoogle Scholar
  41. 41.
    Langford, J. I. (1978). A rapid method for analysing the breadths of diffraction and spectral lines using the voigt function. Journal of Applied Crystallography, 11, 10–14.CrossRefGoogle Scholar
  42. 42.
    Weller, A., Nolting, F., & Staerk, H. (1983). A quantitative interpretation of the magnetic field effect on hyperfine-coupling-induced triplet fromation from radical ion pairs. Chemical Physics Letters, 96, 24–27.CrossRefGoogle Scholar
  43. 43.
    Reufer, M. et al. (2005). Spin-conserving carrier recombination in conjugated polymers. Nature Materials, 4, 340–346.Google Scholar
  44. 44.
    Yang, C. G., Ehrenfreund, E., & Vardeny, Z. V. (2007). Polaron spin-lattice relaxation time in pi-conjugated polymers from optically detected magnetic resonance. Physical Review Letters, 99, 157401.CrossRefGoogle Scholar
  45. 45.
    Deotare, P. B. et al. (2015). Nanoscale transport of charge-transfer states in organic donor-acceptor blends. Nature Materials, 14, 1130–1134.Google Scholar
  46. 46.
    Lee, C. K., Shi, L., & Willard, A. P. (2016). A model of charge-transfer excitons: Diffusion, spin dynamics, and magnetic field effects. Journal of Physical Chemistry Letters, 7, 2246–2251.CrossRefGoogle Scholar
  47. 47.
    Maeda, K. et al. (2012). Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proceedings of the National Academy of Sciences of the United States of America, 109, 4774–4779.Google Scholar
  48. 48.
    Lane, P. A., Wei, X., & Vardeny, Z. V. (1997). Spin and spectral signatures of polaron pairs in \(\pi \)-conjugated polymers. Physical Review B, 56, 4626–4637.Google Scholar
  49. 49.
    Timmel, C. R., Till, U., Brocklehurst, B., Mclauchlan, K. A., & Hore, P. J. (1998). Effects of weak magnetic fields on free radical recombination reactions. Molecular Physics, 95, 71–89.CrossRefGoogle Scholar
  50. 50.
    Nguyen, T. D., Ehrenfreund, E., & Vardeny, Z. V. (2013). Organic magneto-resistance at small magnetic fields; compass effect. Organic Electronics: Physics, Materials, Applications, 14, 1852–1855.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.The James Franck InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations