Skip to main content

Magnetoelectroluminescence

  • Chapter
  • First Online:
  • 389 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Electroluminescence is an important and much studied property of semiconducting films of conjugated organic polymers [1,2,3,4], and is the basis of their commercial application in organic light emitting diodes (oLEDs) [5,6,7,8]. These have the potential to be more efficient, more easily scalable, and more flexible than their inorganic counterparts [7, 9, 10]. oLEDs are constructed in four layers: a thin film of the semiconducting polymer is sandwiched between an electron-injecting metal cathode and a transparent hole-injecting layer, which is then covered by a transparent anode. Calcium and aluminium are commonly used for the cathode and indium tin oxide for the anode, with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) a typical hole-injecting layer [11,12,13,14,15]. In this chapter, we are concerned with the properties of the semiconducting polymer layer which affect the efficiency of electroluminescence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Parts of this chapter have been reproduced with permission from Lawrence, J. E., Lewis, A. M., Manolopoulos, D. E. & Hore, P. J. Journal of Chemical Physics 144, 214109 (2016), https://aip.scitation.org/doi/10.1063/1.4953093

References

  1. Burroughes, J. H. et al. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347, 539–541.

    Google Scholar 

  2. Yang, Y. (1997). Polymer electroluminescent devices. Materials Research Society Bulletin, 22, 31–38.

    Article  CAS  Google Scholar 

  3. Hoofman, R. J. O. M., de Haas, M. P., Siebbeles, L. D. A., & Warman, J. M. (1998). Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly (phenylene vinylene). Nature, 392, 54–56.

    Article  CAS  Google Scholar 

  4. Grozema, F. C. et al. (2002). Theoretical and experimental studies of the opto-electronic properties of positively charged oligo (phenylene vinylene)s: Effects of chain length and alkoxy substitution. Journal of Chemical Physics, 117, 11366.

    Google Scholar 

  5. Tang, C. W., & Vanslyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51, 913–915.

    Article  CAS  Google Scholar 

  6. Kido, J. (1999). Organic displays. Physics World, 12, 27–30.

    Article  CAS  Google Scholar 

  7. Forrest, S. R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428, 911–918.

    Article  CAS  Google Scholar 

  8. (2009). OLED displays and organic photovoltaics. Nature Photonics, 3, 457.

    Google Scholar 

  9. Lupton, J. M., McCamey, D. R., & Boehme, C. (2010). Coherent spin manipulation in molecular semiconductors: Getting a handle on organic spintronics. ChemPhysChem, 11, 3040–3058.

    Article  CAS  Google Scholar 

  10. Reineke, S. (2015). Complementary LED technologies. Nature Materials, 14, 459–462.

    Article  CAS  Google Scholar 

  11. Leger, J. M., Carter, S. A., Ruhstaller, B., Scherf, U., & Tillman, H. (2003). Thickness-dependent changes in the optical properties of PPV- and PF-based polymer light emitting diodes. Physical Review B, 68, 054209.

    Article  CAS  Google Scholar 

  12. McCamey, D. R. et al. (2010). Hyperfine-field-mediated spin beating in electrostatically bound charge carrier pairs. Physical Review Letters, 104, 017601.

    Google Scholar 

  13. Nguyen, T. D., Gautam, B. R., Ehrenfreund, E., & Vardeny, Z. V. (2010). Magnetoconductance response in unipolar and bipolar organic diodes at ultrasmall fields. Physical Review Letters, 105, 166804.

    Article  CAS  Google Scholar 

  14. Nguyen, T. D. et al. (2010). Isotope effect in spin response of pi-conjugated polymer films and devices. Nature Materials, 9, 345–352.

    Google Scholar 

  15. Janssen, P. et al. (2011). On the role of minority carriers in the frequency dependence of organic magnetoresistance. Synthetic Metals, 161, 617–621.

    Google Scholar 

  16. Ehrenfreund, E., & Vardeny, Z. V. (2012). Effects of magnetic field on conductance and electroluminescence in organic devices. Israel Journal of Chemistry, 52, 552–562.

    Article  CAS  Google Scholar 

  17. Kersten, S. P., Schellekens, A. J., Koopmans, B., & Bobbert, P. A. (2011). Magnetic-field dependence of the electroluminescence of organic light-emitting diodes: A competition between exciton formation and spin mixing. Physical Review Letters, 106, 197402.

    Article  CAS  Google Scholar 

  18. McCamey, D. R., Lee, S. Y., Paik, S. Y., Lupton, J. M., & Boehme, C. (2010). Spin-dependent dynamics of polaron pairs in organic semiconductors. Physical Review B, 82, 125206.

    Article  CAS  Google Scholar 

  19. Wang, F., Yang, C. G., Ehrenfreund, E., & Vardeny, Z. V. (2010). Spin dependent reactions of polaron pairs in PPV-based organic diodes. Synthetic Metals, 160, 297–302.

    Article  CAS  Google Scholar 

  20. Landau, L. D. (1933). Über die Bewegung der Elektronen im Kristallgitter. Physikalische Zeitschrift der Sowjetunion, 3, 664.

    CAS  Google Scholar 

  21. Tozer, O. R., & Barford, W. (2014). Localization of large polarons in the disordered Holstein model. Physical Review, 89, 155434.

    Article  CAS  Google Scholar 

  22. Marcus, M., Tozer, O. R., & Barford, W. (2014). Theory of optical transitions in conjugated polymers. II. Real systems. Journal of Chemical Physics, 141, 164102.

    Article  CAS  Google Scholar 

  23. Anderson, P. W. (1958). Absence of diffusion in certain random lattices. Physical Review, 109, 1492–1505.

    Article  CAS  Google Scholar 

  24. Mott, N. F., & Twose, W. (1961). The theory of impurity conduction. Advances in Physics, 10, 107.

    Article  CAS  Google Scholar 

  25. Hsu, J. W. P., Yan, M., Jedju, T. M., Rothberg, L. J., & Hsieh, B. R. (1994). Assignment of the picosecond photoinduced absorption in phenylene vinylene polymers. Physical Review B, 49, 712–715.

    Article  CAS  Google Scholar 

  26. Mizes, H. A., & Conwell, E. M. (1994). Photoinduced charge transfer in poly (p-phenylene vinylene). Physical Review B, 50, 243–246.

    Article  Google Scholar 

  27. Frankevich, E. L. et al. (1992). Polaron-pair generation in poly (phenylene vinylenes). Physical Review B, 46, 9320–9324.

    Google Scholar 

  28. Dyakonov, V., Röosler, G., Schwoerer, M., & Frankevich, E. L. (1997). Evidence for triplet interchain polaron pairs and their transformations in polyphenylenevinylene. Physical Review B, 56, 3852–3862.

    Article  CAS  Google Scholar 

  29. Barford, W. (2004). Theory of singlet exciton yield in light-emitting polymers. Physical Review B, 70, 205204.

    Article  CAS  Google Scholar 

  30. Hu, B., & Wu, Y. (2007). Tuning magnetoresistance between positive and negative values in organic semiconductors. Nature Materials, 6, 985–91.

    Article  CAS  Google Scholar 

  31. Bobbert, P. A., Nguyen, T. D., Van Oost, F. W. A., Koopmans, B., & Wohlgenannt, M. (2007). Bipolaron mechanism for organic magnetoresistance. Physical Review Letters, 99, 216801.

    Article  CAS  Google Scholar 

  32. Lupton, J. M., & Boehme, C. (2008). Magnetoresistance in organic semiconductors. Nature Materials, 7, 598.

    Article  CAS  Google Scholar 

  33. Cox, M. et al. (2014). Spectroscopic evidence for trap-dominated magnetic field effects in organic semiconductors. Physical Review B, 90, 155205.

    Google Scholar 

  34. Parmenter, R. H., & Ruppel, W. (1959). Two-carrier space-charge-limited current in a trap-free insulator. Journal of Applied Physics, 30, 1548–1558.

    Article  Google Scholar 

  35. Behrends, J. et al. (2010). Bipolaron formation in organic solar cells observed by pulsed electrically detected magnetic resonance. Physical Review Letters, 105, 176601.

    Google Scholar 

  36. Kuroda, S. et al. (2000). Spin distributions and excitation spectra of optically generated polarons in poly (p-phenylenevinylene) derivatives. Chemical Physics Letters, 325, 183–188.

    Google Scholar 

  37. Zezin, A. A., Feldman, V. I., Warman, J. M., Wildeman, J., & Hadziioannou, G. (2004). EPR study of positive holes on phenylene vinylene chains: From dimer to polymer. Chemical Physics Letters, 389, 108–112.

    Article  CAS  Google Scholar 

  38. Shimoi, Y., Abe, S., Kuroda, S.-I., & Murata, K. (1995). Polarons and their ENDOR spectra in poly (p-phenylene vinylene). Solid State Communications, 95, 137–141.

    Article  CAS  Google Scholar 

  39. Rosman, K. J. R., & Taylor, P. D. P. (1998). Isotopic compositions of the elements 1997. Pure and Applied Chemistry, 70, 217–235.

    Article  CAS  Google Scholar 

  40. Baker, W. J., Keevers, T. L., Lupton, J. M., McCamey, D. R., & Boehme, C. (2012). Slow hopping and spin dephasing of coulombically bound polaron pairs in an organic semiconductor at room temperature. Physical Review Letters, 108, 267601.

    Article  CAS  Google Scholar 

  41. Langford, J. I. (1978). A rapid method for analysing the breadths of diffraction and spectral lines using the voigt function. Journal of Applied Crystallography, 11, 10–14.

    Article  CAS  Google Scholar 

  42. Weller, A., Nolting, F., & Staerk, H. (1983). A quantitative interpretation of the magnetic field effect on hyperfine-coupling-induced triplet fromation from radical ion pairs. Chemical Physics Letters, 96, 24–27.

    Article  CAS  Google Scholar 

  43. Reufer, M. et al. (2005). Spin-conserving carrier recombination in conjugated polymers. Nature Materials, 4, 340–346.

    Google Scholar 

  44. Yang, C. G., Ehrenfreund, E., & Vardeny, Z. V. (2007). Polaron spin-lattice relaxation time in pi-conjugated polymers from optically detected magnetic resonance. Physical Review Letters, 99, 157401.

    Article  CAS  Google Scholar 

  45. Deotare, P. B. et al. (2015). Nanoscale transport of charge-transfer states in organic donor-acceptor blends. Nature Materials, 14, 1130–1134.

    Google Scholar 

  46. Lee, C. K., Shi, L., & Willard, A. P. (2016). A model of charge-transfer excitons: Diffusion, spin dynamics, and magnetic field effects. Journal of Physical Chemistry Letters, 7, 2246–2251.

    Article  CAS  Google Scholar 

  47. Maeda, K. et al. (2012). Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proceedings of the National Academy of Sciences of the United States of America, 109, 4774–4779.

    Google Scholar 

  48. Lane, P. A., Wei, X., & Vardeny, Z. V. (1997). Spin and spectral signatures of polaron pairs in \(\pi \)-conjugated polymers. Physical Review B, 56, 4626–4637.

    Google Scholar 

  49. Timmel, C. R., Till, U., Brocklehurst, B., Mclauchlan, K. A., & Hore, P. J. (1998). Effects of weak magnetic fields on free radical recombination reactions. Molecular Physics, 95, 71–89.

    Article  CAS  Google Scholar 

  50. Nguyen, T. D., Ehrenfreund, E., & Vardeny, Z. V. (2013). Organic magneto-resistance at small magnetic fields; compass effect. Organic Electronics: Physics, Materials, Applications, 14, 1852–1855.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Lewis .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewis, A. (2018). Magnetoelectroluminescence. In: Spin Dynamics in Radical Pairs. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00686-0_6

Download citation

Publish with us

Policies and ethics