Advertisement

Avian Magnetoreception

  • Alan LewisEmail author
Chapter
  • 241 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In 2000, Ritz and Schulten proposed that a radical pair reaction could be responsible for the magnetoreception observed in some birds [1]. This suggestion gained further traction in 2008, when Maeda et al. showed that the recombination rate of a carotenoid-porphyrin-fullerene radical pair was affected by the application of an Earth-strength magnetic field [2]. At the same time, substantial circumstantial evidence for the involvement of a radical pair reaction in the avian compass was mounting. However, in order for such a reaction to act as a biological compass, it must have an anisotropic response to an Earth-strength magnetic field. This has not yet been observed experimentally, so theoretical studies of the cryptochrome-based radical pair thought to be responsible for magnetoreception are required to assess the likelihood of this mechanism being the basis of the magnetic compass of migratory birds.

References

  1. 1.
    Ritz, T., Adem, S., & Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. Biophysical Journal, 78, 707–718.Google Scholar
  2. 2.
    Maeda, K., et al. (2008). Chemical compass model of avian magnetoreception. Nature, 453, 387–390.Google Scholar
  3. 3.
    Von Middendorf, A. (1859). Die Isepiptesen Rufflands. Mem. Acad. Sci. St Petersbourg VI, Ser. Tome 8, 1–143.Google Scholar
  4. 4.
    Viguier, C. Le. (1882). Sens de L’orientation et ses Organes chez les Animaux et chez L’homme. Revue Philosophique de la France et de l’ Étranger, 14, 1–36.Google Scholar
  5. 5.
    Wiltschko, W. (1968). Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Zeitschrift für Tierpsychologie, 25, 537–558.Google Scholar
  6. 6.
    Wiltschko, W., & Wiltschko, R. (1996). Magnetic orientation in birds. Journal of Experimental Biology, 199, 29–38.Google Scholar
  7. 7.
    Åkesson, S., Morin, J., Muheim, R., & Ottosson, U. (2001). Avian orientation at steep angles of inclination: experiments with migratory white-crowned sparrows at the magnetic North Pole. Proceedings of the Royal Society B: Biological Sciences, 268, 1907–1913.Google Scholar
  8. 8.
    Lefeldt, N., Dreyer, D., Schneider, N.-L., Steenken, F., & Mouritsen, H. (2015). Migratory blackcaps tested in Emlen funnels can orient at 85 degrees but not at 88 degrees magnetic inclination. Journal of Experimental Biology, 218, 206–211.Google Scholar
  9. 9.
    Wiltschko, W., & Wiltschko, R. (1972). Magnetic compass of European robins. Science, 176, 62–64.Google Scholar
  10. 10.
    Wiltschko, W., & Wiltschko, R. (1992). Migratory orientation: Magnetic compass orientation of garden warblers (Sylvia borin) after a simulated crossing of the magnetic equator. Ethology, 91, 70–74.Google Scholar
  11. 11.
    Sakurai, J. J. (1986). Modern quantum mechanics. London: Pearson.Google Scholar
  12. 12.
    Wiltschko, W. (1978). Animal migration, navigation, and homing (pp. 302–310). Berlin: Springer.Google Scholar
  13. 13.
    Rodgers, C. T., & Hore, P. J. (2009). Chemical magnetoreception in birds: the radical pair mechanism. Proceedings of the National Academy of Sciences of the United States of America, 106, 353–360.Google Scholar
  14. 14.
    Wiltschko, W., & Wiltschko, R. (1995). Migratory orientation of European Robins is affected by the wavelength of light as well as by a magnetic pulse. Journal of Comparative Physiology A, 177, 363–369.Google Scholar
  15. 15.
    Johnsen, S., & Lohmann, K. J. (2005). The Physics and Neurobiology of Magnetoreception. Nature Reviews Neuroscience, 6, 703–712.Google Scholar
  16. 16.
    Timmel, C. R., & Hore, P. J. (1996). Oscillating magnetic field effects on the yields of radical pair reactions. Chemical Physics Letters, 257, 401–408.Google Scholar
  17. 17.
    Henbest, K. B., Kukura, P., Rodgers, C. T., Hore, P. J., & Timmel, C. R. (2004). Radio frequency magnetic field effects on a radical recombination reaction: A diagnostic test for the radical pair mechanism. Journal of the American Chemical Society, 126, 8102–8103.Google Scholar
  18. 18.
    Woodward, J. R., Timmel, C. R., McLauchlan, K. A., & Hore, P. J. (2001). Radio frequency magnetic field effects on electron-hole recombination. Physical Review Letters, 87, 077602.Google Scholar
  19. 19.
    Ritz, T., Thalau, P., Phillips, J. B., & Wiltschko, R. (2004). Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature, 429, 177–180.Google Scholar
  20. 20.
    Thalau, P., Ritz, T., & Stapput, K. (2005). Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften, 92, 86–90.Google Scholar
  21. 21.
    Engels, S., et al. (2014). Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature, 509, 353–356.Google Scholar
  22. 22.
    Wiltschko, R. (2015). Magnetoreception in birds: The effect of radio-frequency fields. Journal of the Royal Society Interface, 12, 20141103.Google Scholar
  23. 23.
    Rodgers, C. T. (2007). Magnetic Field Effects in Chemical Systems, Ph.D. thesis, University of Oxford.Google Scholar
  24. 24.
    Schwarze, S. (2016). Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (erithacus rubecula) than strong narrow-band fields. Frontiers in Behavioral Neuroscience, 10, 55.Google Scholar
  25. 25.
    Lau, J. C. S., Wagner-Rundell, N., Rodgers, C. T., Green, N. J. B., & Hore, P. J. (2009). Effects of disorder and motion in a radical pair magnetoreceptor. Journal of the Royal Society Interface, 7, 257–264.Google Scholar
  26. 26.
    Kattnig, D. R., Solov’yov, I. A., & Hore, P. J. (2016). Electron spin relaxation in cryptochrome-based magnetoreception. Physical Chemistry Chemical Physics, 18, 12443–12456.Google Scholar
  27. 27.
    Worster, S., Kattnig, D. R., & Hore, P. J. (2016). Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception. Journal of Chemical Physics, 145, 035104.Google Scholar
  28. 28.
    Zoltowski, B. D., et al. (2011). Structure of full-length Drosophila cryptochrome. Nature, 480, 396–399.Google Scholar
  29. 29.
    Levy, C., et al. (2013). Updated structure of Drosophila cryptochrome. Nature, 495, E3–E4.Google Scholar
  30. 30.
    Brautigam, C. A., et al. (2004). Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 101, 12142–12147.Google Scholar
  31. 31.
    Aubert, C., Vos, M. H., Mathis, P., & Brettel, K. (2000). Intraprotein radical transfer during photoactivation of DNA photolyase. Nature, 405, 586–590.Google Scholar
  32. 32.
    Solov’yov, I. A., Chandler, D. E., & Schulten, K. (2007). Magnetic field effects in arabidopsis thaliana cryptochrome-1. Biophysical Journal, 92, 2711–2726.Google Scholar
  33. 33.
    Biskup, T., et al. (2009). Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. Angewandte Chemie - International Edition, 48, 404–407.Google Scholar
  34. 34.
    Maeda, K., et al. (2012). Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proceedings of the National Academy of Sciences of the United States of America, 109, 4774–4779.Google Scholar
  35. 35.
    Dodson, C. A., Hore, P. J., & Wallace, M. I. (2013). A radical sense of direction: signaling and mechanism in cryptochrome magnetoreception. Trends in Biochemical Sciences, 38, 435–446.Google Scholar
  36. 36.
    Nießner, C. (2011). Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLOS ONE, 6, e20091.Google Scholar
  37. 37.
    Mouritsen, H. (2013). Neurosciences - from molecule to behavior: a university textbook (pp. 427–443). Berlin: Springer.Google Scholar
  38. 38.
    Lee, A. A., et al. (2014). Alternative radical pairs for cryptochrome-based magnetoreception. Journal of the Royal Society Interface, 11, 20131063.Google Scholar
  39. 39.
    Efimova, O., & Hore, P. J. (2008). Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass. Biophysical Journal, 94, 1565–1574.Google Scholar
  40. 40.
    Cintolesi, F., Ritz, T., Kay, C. W. M., Timmel, C. R., & Hore, P. J. (2003). Anisotropic recombination of an immobilized photoinduced radical pair in a 50-\(\mu \)T magnetic field: A model avian photomagnetoreceptor. Chemical Physics, 294, 385–399.Google Scholar
  41. 41.
    Solov’yov, I. A., & Schulten, K. (2009). Magnetoreception through cryptochrome may involve superoxide. Biophysical Journal, 96, 4804–4813.Google Scholar
  42. 42.
    Müller, P., & Ahmad, M. (2011). Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. Journal of Biological Chemistry, 286, 21033–21040.Google Scholar
  43. 43.
    Karogodina, T. Y., Dranov, I. G., Sergeeva, S. V., Stass, D. V., & Steiner, U. E. (2011). Kinetic magnetic-field effect involving the small biologically relevant inorganic radicals NO and O2\(^{{\bullet }-}\). ChemPhysChem, 12, 1714–1728.Google Scholar
  44. 44.
    Kalmijn, A. J., & Blakemore, R. P. (1978). Animal migration, navigation, and homing (pp. 354–355). Berlin: Springer.Google Scholar
  45. 45.
    Kirschvink, J. L., Walker, M. M., & Diebel, C. E. (2001). Magnetite-based magnetoreception. Current Opinion in Neurobiology, 11, 462–467.Google Scholar
  46. 46.
    Frankel, R. B., & Blakemore, R. P. (1989). Magnetite and magnetotaxis in microorganisms. Bioelectromagnetics, 10, 223–237.Google Scholar
  47. 47.
    Grissom, C. B. (1995). Magnetic field effects in biology: A survey of possible mechanisms with emphasis on radical-pair recombination. Chemical Reviews, 95, 3–24.Google Scholar
  48. 48.
    Kirschvink, J. L., Winklhofer, M., & Walker, M. M. (2010). Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. Journal of the Royal Society Interface, 7, S179–S191.Google Scholar
  49. 49.
    Hore, P. J., & Mouritsen, H. (2016). The radical-pair mechanism of magnetoreception. Annual review of Biophysics, 45, 299.Google Scholar
  50. 50.
    Maeda, K., et al. (2011). Spin-selective recombination kinetics of a model chemical magnetoreceptor. Chemical Communications, 47, 6563–6565.Google Scholar
  51. 51.
    Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789.Google Scholar
  52. 52.
    Becke, A. D. (1993). A new mixing of Hartree-Fock and local density-functional theories. The Journal of Chemical Physics, 98, 1372.Google Scholar
  53. 53.
    Barone, V. (1995). Recent Advances in Density Functional Methods: Part I. Singapore: World Scientific.Google Scholar
  54. 54.
    Newman, T. (2003). Exploring the chemical compass: An experimental and theoretical study Part II, Thesis, University of Oxford.Google Scholar
  55. 55.
    Timmel, C. R., Till, U., Brocklehurst, B., Mclauchlan, K. A., & Hore, P. J. (1998). Effects of weak magnetic fields on free radical recombination reactions. Molecular Physics, 95, 71–89.Google Scholar
  56. 56.
    Till, U., Timmel, C. R., Brocklehurst, B., & Hore, P. J. (1998). The inuence of very small magnetic fields on radical recombination reactions in the limit of slow recombination. Chemical Physics Letters, 298, 7–14.Google Scholar
  57. 57.
    Weaver, J. C., Vaughan, T. E., & Astumian, R. D. (2000). Biological sensing of small field differences bymagnetically sensitive chemical reactions. Nature, 405, 707–709.Google Scholar
  58. 58.
    Mouritsen, H., & Hore, P. J. (2012). The magnetic retina: Light-dependent and trigeminal magnetoreception in migratory birds. Current Opinion in Neurobiology, 22, 343–352.Google Scholar
  59. 59.
    Hill, E., & Ritz, T. (2010). Can disordered radical pair systems provide a basis for a magnetic compass in animals? Journal of the Royal Society Interface, 7(Suppl 2), S265–71.Google Scholar
  60. 60.
    Hiscock, H. G., et al. (2016). The quantum needle of the avian magnetic compass. Proceedings of the National Academy of Sciences of the United States of America, 113, 201600341.Google Scholar
  61. 61.
    Ball, P. (2011). The dawn of quantum biology. Nature, 474, 272–274.Google Scholar
  62. 62.
    Al-Khalili, J. & McFadden, J. (2014). Life on the edge: The coming of ageof quantum biology, Transworld.Google Scholar
  63. 63.
    Kominis, I. K. (2015). The radical-pair mechanism as a paradigm for the emerging science of quantum biology. Modern Physics Letters B, 29, 1530013.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.The James Franck InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations