Molecular Wires

  • Alan LewisEmail author
Part of the Springer Theses book series (Springer Theses)


In recent years, molecular wires have been the subject of significant interest and investigation [1, 2]. A common class of molecular wires are those with a D–B–A structure – an electron donor separated from an electron acceptor by a molecular “bridge”, typically an oligomer, which allows precise control over the separation between the electron donor and acceptor.


  1. 1.
    Nitzan, A. (2001). Electron transmission through molecules and molecular interfaces. Annual Review of Physical Chemistry, 52, 681–750.CrossRefGoogle Scholar
  2. 2.
    Weiss, E. A., et al. (2005). Conformationally gated switching between superexchange and hopping within oligo-p-phenylene-based molecular wires. Journal of the American Chemical Society, 127, 11842–11850.CrossRefGoogle Scholar
  3. 3.
    Goldsmith, R. H., et al. (2005). Wire-like charge transport at near constant bridge energy through uorene oligomers. Proceedings of the National Academy of Sciences of the United States of America, 102, 3540–5.CrossRefGoogle Scholar
  4. 4.
    Fromme, P. (2002). Functional implications on the mechanism of the function of photosystem II including water oxidation based on the structure of photosystem II. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 1337–44.CrossRefGoogle Scholar
  5. 5.
    Parson, W. W. (2003). Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account. Photosynthesis Research, 76, 81–92.CrossRefGoogle Scholar
  6. 6.
    Wasielewski, M. R. (2006). Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. Journal of Organic Chemistry, 71, 5051–5066.CrossRefGoogle Scholar
  7. 7.
    Jortner, J., & Ratner, M. A. (1997). Molecular Electronics. Oxford: Blackwell Science.Google Scholar
  8. 8.
    Davis, W. B., Wasielewski, M. R., Ratner, M. A., Mujica, V., & Nitzan, A. (1997). Electron transfer rates in bridged molecular systems: a phenomenological approach to relaxation. The Journal of Physical Chemistry A, 101, 6158–6164.CrossRefGoogle Scholar
  9. 9.
    Davis, W. B., Ratner, M. A., & Wasielewski, M. R. (2002). Dependence of electron transfer dynamics in wire-like bridge molecules on donor-bridge energetics and electronic interactions. Chemical Physics, 281, 333–346.CrossRefGoogle Scholar
  10. 10.
    Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S., & Dutton, P. L. (1992). Nature of biological electron transfer. Nature, 355, 796–802.CrossRefGoogle Scholar
  11. 11.
    Farid, R. S., Moser, C. C., & Dutton, P. L. (1993). Electron transfer in proteins. Current Opinion in Structural Biology, 3, 225–233.CrossRefGoogle Scholar
  12. 12.
    Mikkelsen, K. V., & Ratner, M. A. (1987). Electron tunneling in solid-state electron-transfer reactions. Chemical Reviews, 87, 113–153.CrossRefGoogle Scholar
  13. 13.
    Barbara, P. F., Meyer, T. J., & Ratner, M. A. (1996). Contemporary issues in electron transfer research. The Journal of Physical Chemistry, 100, 13148–13168.CrossRefGoogle Scholar
  14. 14.
    Murphy, C. J., et al. (1994). Fast photoinduced electron transfer through DNA intercalation. Proceedings of the National Academy of Sciences of the United States of America, 91, 5315–9.CrossRefGoogle Scholar
  15. 15.
    Davis, W. B., Svec, W. A., Ratner, M. A., & Wasielewski, M. R. (1998). Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature, 396, 60–63.CrossRefGoogle Scholar
  16. 16.
    Weiss, E. A. (2004). Making a molecular wire: charge and spin transport through. Journal Of The American Chemical Society, 126, 5577–5584.CrossRefGoogle Scholar
  17. 17.
    Jang, S., Berkelbach, T. C., & Reichman, D. R. (2013). Coherent quantum dynamics in donor-bridge-acceptor systems: beyond the hopping and super-exchange mechanisms. New Journal of Physics, 15, 105020.CrossRefGoogle Scholar
  18. 18.
    Anderson, P. W. (1959). New approach to the theory of superexchange interactions. Physical Review, 115, 2–13.CrossRefGoogle Scholar
  19. 19.
    McConnell, H. M. (1961). Intramolecular charge transfer in aromatic free radicals. Journal of Chemical Physics, 35, 508–515.CrossRefGoogle Scholar
  20. 20.
    Jortner, J., Bixon, M., Langenbacher, T., & Michel-Beyerle, M. E. (1998). Charge transfer and transport in DNA. Proceedings of the National Academy of Sciences of the United States of America, 95, 12759–12765.CrossRefGoogle Scholar
  21. 21.
    Berlin, Y. A., Burin, A. L., & Ratner, M. A. (2002). Elementary steps for charge transport in DNA: thermal activation versus tunneling. Chemical Physics, 275, 61–74.CrossRefGoogle Scholar
  22. 22.
    Steiner, U. E., & Ulrich, T. (1989). Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews, 89, 51–147.CrossRefGoogle Scholar
  23. 23.
    Chiu, M. F., Gilbert, B. C. & Hanson, P. A study by electron spin resonance of some heterocyclic radicals containing elements of group VI. Journal of the Chemical Society B: Physical Organic, 1700 (1970).Google Scholar
  24. 24.
    Tauber, M. J., Kelley, R. F., Giaimo, J. M., Rybtchinski, B., & Wasielewski, M. R. (2006). Electron hopping in pi-stacked covalent and self-assembled perylene diimides observed by ENDOR spectroscopy. Journal of the American Chemical Society, 128, 1782–1783.CrossRefGoogle Scholar
  25. 25.
    Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789.CrossRefGoogle Scholar
  26. 26.
    Becke, A. D. (1993). A new mixing of Hartree-Fock and local density-functional theories. The Journal of Chemical Physics, 98, 1372.CrossRefGoogle Scholar
  27. 27.
    Barone, V. (1995). Recent Advances in Density Functional Methods: Part I. Singapore: World Scientific.Google Scholar
  28. 28.
    Dunning, T. H, Jr. (1989). Gaussian basis sets for use in correlated molecular calculations. I. the atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90, 1007.CrossRefGoogle Scholar
  29. 29.
    Woon, D. E., & Dunning, T. H, Jr. (1993). Gaussian basis sets for use in correlated molecular calculations. III. the atoms aluminum through argon. Journal of Chemical Physics, 98, 1358.CrossRefGoogle Scholar
  30. 30.
    Hasharoni, K. (1995). Mimicry of the radical pair and triplet-states in photosynthetic reaction centers with a synthetic model. Journal of the American Chemical Society, 117, 8055–8056.CrossRefGoogle Scholar
  31. 31.
    Weiss, E. A., Ratner, M. A., & Wasielewski, M. R. (2003). Direct measurement of singlet - triplet splitting within rodlike photogenerated radical ion pairs using magnetic field effects: estimation of the electronic coupling for charge recombination. Journal of Physical Chemistry, 107, 3639–3647.CrossRefGoogle Scholar
  32. 32.
    Weiss, E. A., Tauber, M. J., Ratner, M. A., & Wasielewski, M. R. (2005). Electron spin dynamics as a probe of molecular dynamics: Temperature-dependent magnetic field effects on charge recombination within a covalent radical ion pair. Journal of the American Chemical Society, 127, 6052–6061.CrossRefGoogle Scholar
  33. 33.
    Marcus, R. A. (1965). On the theory of electron-transfer reactions. VI. unified treatment for homogeneous and electrode reactions. Journal of Chemical Physics, 43, 679.CrossRefGoogle Scholar
  34. 34.
    Dance, Z. E. X., et al. (2006). Time-resolved EPR studies of photogenerated radical ion pairs separated by p-phenylene oligomers and of triplet states resulting from charge recombination. Journal of Physical Chemistry B, 110, 25163–25173.CrossRefGoogle Scholar
  35. 35.
    Maeda, K., et al. (2011). Spin-selective recombination kinetics of a model chemical magnetoreceptor. Chemical Communications, 47, 6563–6565.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.The James Franck InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations