Skip to main content

Gait Recognition Using Normal Distance Map and Sparse Multilinear Laplacian Discriminant Analysis

  • Conference paper
  • First Online:
  • 1679 Accesses

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 30))

Abstract

In visual surveillance applications, gait is the preferred candidate for recognition of the identity of the subject under consideration. Gait is a behavioral biometric that has a large amount of redundancy, complex pattern distribution and very large variability, when multiple covariate exist. This demands robust representation and computationally efficient statistical processing approaches for improved performance. In this paper, a robust representation approach called Normal Distance Map and multilinear statistical discriminant analysis called Sparse Multilinear Discriminant Analysis is applied for improving robustness against covariate variation and increase recognition accuracy. Normal Distance Map captures geometry and shape of silhouettes so as to make representation robust and Sparse Multilinear Discriminant Analysis obtains projection matrices to preserve discrimination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Makihara Y, Matovski DS, Nixon MS, Carter JN, Yagi Y (2015) Gait recognition: databases, representations, and applications. Wiley Online Library

    Google Scholar 

  2. Sivarathinabala M, Abirami S, Baskaran R (2017) A study on security and surveillance system using gait recognition. In: Intelligent techniques in signal processing for multimedia security. Springer, Berlin, pp 227–252

    Google Scholar 

  3. Zhang Z, Hu M, Wang Y (2011) A survey of advances in biometric gait recognition. In: Chinese conference on biometric recognition. Springer, Berlin, pp 150–158

    Google Scholar 

  4. Boulgouris NV, Hatzinakos D, Plataniotis KN (2005) Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Process Mag 22(6):78–90

    Article  Google Scholar 

  5. Wang J, She M, Nahavandi S, Kouzani A (2010) A review of vision-based gait recognition methods for human identification. Digit Image Comput: Tech Appl pp 320–327

    Google Scholar 

  6. Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28:316–322

    Article  Google Scholar 

  7. Huang X, Boulgouris NV (2012) Gait recognition with shifted energy image and structural feature extraction. IEEE Trans Image Process 21:2256–2268

    Article  MathSciNet  MATH  Google Scholar 

  8. Bashir K, Xiang T, Gong S (2009) Gait recognition using gait entropy image. In: In 3rd international conference on crime detection and protection, London, UK

    Google Scholar 

  9. Lam THW, Cheung K, Liu JN (2011) Gait flow image: a silhouette-based gait representation for human identification. Pattern Recogn 44:973–987

    Article  MATH  Google Scholar 

  10. Makihara Y, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y (2006) Gait recognition using a view transformation model in the frequency domain. In: European conference on computer vision. Springer, Berlin, pp 151–163

    Google Scholar 

  11. Hofmann M, Bachmann S, Rigoll G (2012) 2.5 d gait biometrics using the depth gradient histogram energy image. In: 2012 IEEE fifth international conference on biometrics: theory, applications and systems (BTAS). IEEE, New York, pp 399–403

    Google Scholar 

  12. El-Alfy H, Mitsugami I, Yagi Y (2014) A new gait-based identification method using local gauss maps. In: Asian conference on computer vision. Springer, Berlin, pp 3–18

    Google Scholar 

  13. Tang S, Wang X, Lv X, Han TX, Keller J, He Z, Skubic M, Lao S (2012) Histogram of oriented normal vectors for object recognition with a depth sensor. In: Asian conference on computer vision. Springer, Berlin, pp 525–538

    Google Scholar 

  14. El-Alfy H, Mitsugami I, Yagi Y (2017) Gait recognition based on normal distance maps. IEEE Trans Cybern

    Google Scholar 

  15. Gauss KF (1902) General investigations of curved surfaces of 1827 and 1825

    Google Scholar 

  16. Hazewinkel M (2001) Encyclopaedia of mathematics, vol 13. Springer, Berlin

    MATH  Google Scholar 

  17. Chhatrala R, Patil S, Lahudkar S, Jadhav DV (2017) Sparse multilinear Laplacian discriminant analysis for gait recognition. Pattern Anal Appl pp 1–14

    Google Scholar 

  18. Xu D, Huang Y, Zeng Z, Xu X (2012) Human gait recognition using patch distribution feature and locality-constrained group sparse representation. IEEE Trans Image Process 21(1):316–326

    Article  MathSciNet  MATH  Google Scholar 

  19. Sarkar S, Phillips P, Liu Z, Vega IR, Grother P, Bowyer K (2005) The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans Pattern Anal Mach Intell 27:166–177

    Article  Google Scholar 

  20. Iwama H, Okumura M, Makihara Y, Yagi Y (2012) The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans Inf Forensics Secur 7(5):1511–1521

    Article  Google Scholar 

  21. Wang C, Zhang J, Pu J, Yuan X, Wang L (2010) Chrono-gait image: a novel temporal template for gait recognition. In: European conference on computer vision. Springer, Berlin, pp 257–270

    Google Scholar 

  22. Guan Y, Li CT, Roli F (2015) On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 37(7):1521–1528

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risil Chhatrala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chhatrala, R., Patil, S., Jadhav, D.V. (2019). Gait Recognition Using Normal Distance Map and Sparse Multilinear Laplacian Discriminant Analysis. In: Pandian, D., Fernando, X., Baig, Z., Shi, F. (eds) Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB). ISMAC 2018. Lecture Notes in Computational Vision and Biomechanics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-00665-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00665-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00664-8

  • Online ISBN: 978-3-030-00665-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics