Skip to main content

Demand Controlled Ventilation in Residential Buildings

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

The energy use for ventilation (heating and fan electricity) accounts for a large part of the energy use in residential buildings. For residential buildings, in many cases the building is occupied only part of the day, and further the pollution and moisture load generated by household activities varies during a day. Using demand controlled ventilation (DCV) has a great energy saving potential both regarding fan and heating energy. However, it is important how the ventilation is controlled in order to ensure an adequate indoor air quality, thermal comfort and avoid damages on the building. In this study different control strategies, control parameters, number of sensors and placing of sensors, number of zones are tested by modeling a single family house. Conclusions from the study are that the size of the energy saving depends on control strategy and system design and it is important to design and choose appropriate control strategy to obtain a good indoor environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Energiläget 2015, Energimyndigheten (2015)

    Google Scholar 

  2. Energieffektiva småhus- En marknadsöversikt för dig som ska bygga nytt, Energimyndigheten (2011)

    Google Scholar 

  3. Att ventilera hus- Fakta och bakgrund om ventilation av hus och lägenheter, Joakim Achim Friedrich, Hållbar utveckling Väst, Göteborg (2011)

    Google Scholar 

  4. BBR Swedish Building Regulations: [Online] http://www.boverket.se

  5. S. Geving, J. Holme, J.A. Jenssen, Indoor air humidity in Norwegian houses, in Proceedings of 8th Symposium on Building Physics in the Nordic Countries, pp. 801–807 (2008)

    Google Scholar 

  6. T. Kalamees, J. Kurnitski, J. Vinha, Indoor humidity loads in Finnish detached houses, in Proceedings of the 7th Symposium on Building Physics in the Nordic Countries, pp. 13–15, Iceland (2005)

    Google Scholar 

  7. Y. Fan, K. Ito, Integrated building energy computational fluid dynamics simulation for estimating the energy-saving effect of energy recovery ventilator with CO2 demand-controlled ventilation system in office space. Indoor Built Environ. 23(6), 785–803 (2014)

    Article  Google Scholar 

  8. B.J. Wachenfeldt, M. Mysen, P.G. Schild, Air flow rates and energy saving potential in schools with demand-controlled displacement ventilation. Energy Build. 39(10), 1073–1079 (2007)

    Article  Google Scholar 

  9. V. Pavlovas, Demand controlled ventilation: a case study for existing Swedish multifamily buildings. Energy Build. 36(10), 1029–1034 (2004)

    Article  Google Scholar 

  10. A. Hesaraki, S. Holmberg, Demand-controlled ventilation in new residential buildings: consequences on indoor air quality and energy savings. Indoor Built Environ. 24(2), 162–173 (2015)

    Article  Google Scholar 

  11. T.R. Nielsen, C. Drivsholm, Energy efficient demand controlled ventilation in single family houses. Energy Build. 42(11), 1995–1998 (2010)

    Article  Google Scholar 

  12. P. Ylmén, J. Persson, Monitoring of pilot sites. Grant agreement: ENER/FP7/285173/NEED4B (2017)

    Google Scholar 

  13. Equa Simulation Technology, AB, IDA Simulation Environment. Version 2.11, Reference manual, Sundbyberg, Sweden, www.equa.se (1999)

  14. Sveby. Brukarindata för energiberäkningar i bostäder, projekt rapport (2009)

    Google Scholar 

  15. CEN. Criteria for the indoor environment, including thermal, indoor air quality, light and noise. Brussels (2005)

    Google Scholar 

  16. B. Mattson, Extract of raw data from the measurements in BETSI-study (Boverket, Karlskrona, 2010)

    Google Scholar 

  17. FoHMFS 2014:18, Folkhälsomyndighetens allmänna råd om ventilation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Markusson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Markusson, C. (2019). Demand Controlled Ventilation in Residential Buildings. In: Johansson, D., Bagge, H., Wahlström, Å. (eds) Cold Climate HVAC 2018. CCC 2018. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-00662-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00662-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00661-7

  • Online ISBN: 978-3-030-00662-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics