Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 569 Accesses

Abstract

In Chaps. 3 and 4 we have examined equilibrium and nonequilibrium features of the quantum phase transition (QPT) exhibited by the quantum Rabi model (QRM). As we have emphasized, this finite-component system QPT differs from conventional phase transitions in many-body systems as it appears without scaling up system constituents. The present chapter exploits this fact, proposing a single trapped-ion experiment in which universal features of a superradiant QPT can be examined. This chapter completes, and also complements, the previous Chaps. 3 and 4 involving the QRM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that a time-independent Rabi frequency could have been used instead. For that, one would have to tune the frequency \(\omega _{D2}=\omega _I+\Omega _{D1}\) in order to provide the required resonant terms with \(\Omega _{D1}\sigma _x/2\).

References

  1. H.Häffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469, 155 (2008). https://doi.org/10.1016/j.physrep.2008.09.003

    Article  ADS  MathSciNet  Google Scholar 

  2. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003). https://doi.org/10.1103/RevModPhys.75.281

    Article  ADS  Google Scholar 

  3. S. Haroche, J.-M. Raimond, Exploring the quantum: atoms, cavities, and photons. Oxford University Press, Oxford (2006)

    Google Scholar 

  4. M.H. Devoret, R.J. Schoelkopf, Superconducting circuits for quantum information: an outlook. Science 339, 1169 (2013). https://doi.org/10.1126/science.1231930

    Article  ADS  Google Scholar 

  5. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014). https://doi.org/10.1103/RevModPhys.86.1391

    Article  ADS  Google Scholar 

  6. S. Felicetti, E. Rico, C. Sabin, T. Ockenfels, J. Koch, M. Leder, C. Grossert, M. Weitz, E. Solano, Quantum Rabi model in the Brillouin zone with ultracold atoms. Phys. Rev. A 95, 013827 (2017). https://doi.org/10.1103/PhysRevA.95.013827

  7. P. Schneeweiss, A. Dareau, C. Sayrin, Cold-atom based implementation of the quantum Rabi model (2017). arxiv.org/abs/1706.07781

  8. M. Abdi, M.-J. Hwang, M. Aghtar, M.B. Plenio, Spin-mechanical scheme with color centers in hexagonal boron nitride membranes. Phys. Rev. Lett. 119, 233602 (2017). https://doi.org/10.1103/PhysRevLett.119.233602

  9. D. Porras, J.I. Cirac, Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004). https://doi.org/10.1103/PhysRevLett.92.207901

  10. K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E.E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe, Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590 (2010). https://doi.org/10.1038/nature09071

    Article  ADS  Google Scholar 

  11. R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang, J.K. Freericks, C. Monroe, Onset of a quantum phase transition with a trapped ion quantum simulator. Nat. Commun. 2, 377 (2011). https://doi.org/10.1038/ncomms1374

  12. K. Pyka, J. Keller, H.L. Partner, R. Nigmatullin, T. Burgermeister, D.M. Meier, K. Kuhlmann, A. Retzker, M.B. Plenio, W.H. Zurek, A. del Campo, T.E. Mehlst"aubler, Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals. Nat. Commun. 4, 2291 (2013). https://doi.org/10.1038/ncomms3291

  13. S. Ulm, J. Ronagel, G. Jacob, C. Degnther, S.T. Dawkins, U.G. Poschinger, R. Nigmatullin, A. Retzker, M.B. Plenio, F. Schmidt-Kaler, K. Singer, Observation of the Kibble-Zurek scaling law for defect formation in ion crystals. Nat. Commun. 4, 2290 (2013). https://doi.org/10.1038/ncomms3290

  14. J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.-X. Gong, C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601 (2017). https://doi.org/10.1038/nature24654

    Article  ADS  Google Scholar 

  15. P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B.P. Lanyon, M. Heyl, R. Blatt, C.F. Roos, Direct observation of dynamical quantum phase transitions in an interacting many-body system. Phys. Rev. Lett. 119, 080501 (2017). https://doi.org/10.1103/PhysRevLett.119.080501

  16. A.M. Souza, G.A. ’Alvarez, D. Suter, Robust dynamical decoupling. Phil. Trans. R. Soc. A 370, 4748 (2012). https://doi.org/10.1098/rsta.2011.0355

    Article  ADS  Google Scholar 

  17. L. Viola, S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998). https://doi.org/10.1103/PhysRevA.58.2733

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Bermudez, P.O. Schmidt, M.B. Plenio, A. Retzker, Robust trapped-ion quantum logic gates by continuous dynamical decoupling. Phys. Rev. A 85, 040302 (2012). https://doi.org/10.1103/PhysRevA.85.040302

  19. A. Lemmer, A. Bermudez, M.B. Plenio, Driven geometric phase gates with trapped ions. New J. Phys. 15, 083001 (2013). http://stacks.iop.org/1367-2630/15/i=8/a=083001

    Article  ADS  Google Scholar 

  20. I. Cohen, P. Richerme, Z.-X. Gong, C. Monroe, A. Retzker, Simulating the Haldane phase in trapped-ion spins using optical fields. Phys. Rev. A 92, 012334 (2015). https://doi.org/10.1103/PhysRevA.92.012334

  21. G. Mikelsons, I. Cohen, A. Retzker, M.B. Plenio, Universal set of gates for microwave dressed-state quantum computing. New J. Phys. 17, 053032 (2015). http://stacks.iop.org/1367-2630/17/i=5/a=053032

    Article  ADS  MathSciNet  Google Scholar 

  22. N. Timoney, I. Baumgart, M. Johanning, A.F. Varon, M.B. Plenio, A. Retzker, C. Wunderlich, Quantum gates and memory using microwave-dressed states. Nature 476, 185 (2011). https://doi.org/10.1038/nature10319

    Article  ADS  Google Scholar 

  23. T.R. Tan, J.P. Gaebler, R. Bowler, Y. Lin, J.D. Jost, D. Leibfried, D.J. Wineland, Demonstration of a dressed-state phase gate for trapped ions. Phys. Rev. Lett. 110, 263002 (2013). https://doi.org/10.1103/PhysRevLett.110.263002

  24. R. Puebla, J. Casanova, M.B. Plenio, A robust scheme for the implementation of the quantum Rabi model in trapped ions. New. J. Phys. 18, 113039 (2016). http://stacks.iop.org/1367-2630/18/i=11/a=113039

    Article  ADS  Google Scholar 

  25. R. Puebla, M.-J. Hwang, J. Casanova, M.B. Plenio, Probing the dynamics of a superradiant quantum phase transition with a single trapped ion. Phys. Rev. Lett. 118, 073001 (2017a). https://doi.org/10.1103/PhysRevLett.118.073001

  26. R. Puebla, M.-J. Hwang, J. Casanova, M.B. Plenio, Protected ultrastrong coupling regime of the two-photon quantum Rabi model with trapped ions. Phys. Rev. A 95, 063844 (2017b). https://doi.org/10.1103/PhysRevA.95.063844

  27. R. Puebla, J. Casanova, M.B. Plenio, Magnetic-field fluctuations analysis for the ion trap implementation of the quantum Rabi model in the deep strong coupling regime. J. Mod. Opt. 65, 745 (2018). https://doi.org/10.1080/09500340.2017.1404651

    Article  ADS  MathSciNet  Google Scholar 

  28. J.S. Pedernales, I. Lizuain, S. Felicetti, G. Romero, L. Lamata, E. Solano, Quantum Rabi model with trapped ions. Sci. Rep. 5, 15472 (2015). https://doi.org/10.1038/srep15472

  29. J.I. Cirac, A.S. Parkins, R. Blatt, P. Zoller, “Dark” squeezed states of the motion of a trapped ion. Phys. Rev. Lett. 70, 556 (1993). https://doi.org/10.1103/PhysRevLett.70.556

    Article  ADS  Google Scholar 

  30. L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986). https://doi.org/10.1103/RevModPhys.58.233

    Article  ADS  Google Scholar 

  31. W. Paul, Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531 (1990). https://doi.org/10.1103/RevModPhys.62.531

    Article  ADS  Google Scholar 

  32. D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998). https://doi.org/10.6028/jres.103.019

    Article  Google Scholar 

  33. R. Gerritsma, G. Kirchmair, F. Zahringer, E. Solano, R. Blatt, C.F. Roos, Quantum simulation of the Dirac equation. Nature 463, 68 (2010). https://doi.org/10.1038/nature08688

    Article  ADS  Google Scholar 

  34. R. Gerritsma, B.P. Lanyon, G. Kirchmair, F. Z"ahringer, C. Hempel, J. Casanova, J.J. Garc’ia-Ripoll, E. Solano, R. Blatt, C.F. Roos, Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106, 060503 (2011). https://doi.org/10.1103/PhysRevLett.106.060503

  35. S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, C. Monroe, Manipulation and detection of a trapped \({\rm Yb}^+\) hyperfine qubit. Phys. Rev. A 76, 052314 (2007). https://doi.org/10.1103/PhysRevA.76.052314

  36. J. Casanova, G. Romero, I. Lizuain, J.J. Garc’ia-Ripoll, E. Solano, Deep strong coupling regime of the Jaynes-Cummings model. Phys. Rev. Lett. 105, 263603 (2010a). https://doi.org/10.1103/PhysRevLett.105.263603

  37. S. Haroche, Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083 (2013). https://doi.org/10.1103/RevModPhys.85.1083

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Felicetti, J.S. Pedernales, I.L. Egusquiza, G. Romero, L. Lamata, D. Braak, E. Solano, Spectral collapse via two-phonon interactions in trapped ions. Phys. Rev. A 92, 033817 (2015). https://doi.org/10.1103/PhysRevA.92.033817

  39. J.I. Cirac, R. Blatt, P. Zoller, W.D. Phillips, Laser cooling of trapped ions in a standing wave. Phys. Rev. A 46, 2668 (1992). https://doi.org/10.1103/PhysRevA.46.2668

    Article  ADS  Google Scholar 

  40. T.E. deLaubenfels, K.A. Burkhardt, G. Vittorini, J.T. Merrill, K.R. Brown, J.M. Amini, Modulating carrier and sideband coupling strengths in a standing-wave gate beam. Phys. Rev. A 92, 061402 (2015). https://doi.org/10.1103/PhysRevA.92.061402

  41. H.-P. Breuer, F. Pretuccione, The theory of open quantum systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  42. D.A. Lidar, Review of decoherence-free subspaces, noiseless subsystems, and dynamical decoupling, in Quantum information and computation for chemistry (Wiley, 2014), pp. 295–354. https://doi.org/10.1002/9781118742631.ch11

    Google Scholar 

  43. J.-M. Cai, B. Naydenov, R. Pfeiffer, L.P. McGuinness, K.D. Jahnke, F. Jelezko, M.B. Plenio, A. Retzker, Robust dynamical decoupling with concatenated continuous driving. New J. Phys. 14, 113023 (2012). http://stacks.iop.org/1367-2630/14/i=11/a=113023

    Article  ADS  MathSciNet  Google Scholar 

  44. L. Lamata, J. Le’on, T. Sch"atz, E. Solano, Dirac equation and quantum relativistic effects in a single trapped ion, https://doi.org/10.1103/PhysRevLett.98.253005 Phys. Rev. Lett. 98, 253005 (2007)

  45. J. Casanova, J.J. Garc’ia-Ripoll, R. Gerritsma, C.F. Roos, E. Solano, Klein tunneling and Dirac potentials in trapped ions. Phys. Rev. A 82, 020101 (2010b). https://doi.org/10.1103/PhysRevA.82.020101

  46. G.E. Uhlenbeck, L.S. Ornstein, On the theory of the Brownian motion. Phys. Rev. 36, 823 (1930). https://doi.org/10.1103/PhysRev.36.823

    Article  ADS  Google Scholar 

  47. M.C. Wang, G.E. Uhlenbeck, On the theory of the Brownian motion II. Rev. Mod. Phys. 17, 323 (1945). https://doi.org/10.1103/RevModPhys.17.323

    Article  ADS  MathSciNet  Google Scholar 

  48. D.T. Gillespie, Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E 54, 2084 (1996a). https://doi.org/10.1103/PhysRevE.54.2084

    Article  ADS  Google Scholar 

  49. D.T. Gillespie, The mathematics of Brownian motion and Johnson noise. Am. J. Phys. 64, 225 (1996b). https://doi.org/10.1119/1.18210

    Article  ADS  Google Scholar 

  50. F. Schmidt-Kaler, S. Gulde, M. Riebe, T. Deuschle, A. Kreuter, G. Lancaster, C. Becher, J. Eschner, H. Hffner, R. Blatt, The coherence of qubits based on single \(Ca^+\) ions. J. Phys. B At. Mol. Opt. Phys. 36, 623 (2003). http://stacks.iop.org/0953-4075/36/i=3/a=319

    Article  ADS  Google Scholar 

  51. A.H. Burrell, High fidelity readout of trapped ion qubits, Ph.D dissertation, School University of Oxford (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Puebla .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puebla, R. (2018). Superradiant QPT with a Single Trapped Ion. In: Equilibrium and Nonequilibrium Aspects of Phase Transitions in Quantum Physics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00653-2_5

Download citation

Publish with us

Policies and ethics