Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 554 Accesses

Abstract

Our understanding of nature is built on the precise knowledge of the interaction between distinct constituents of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that there are continuous phase transitions that do not break any symmetry, as it is the case of the Kosterlitz–Thouless phase transition [13]. However, this special type of phase transition is not covered in this thesis.

  2. 2.

    For temperature, for example, this parameter would become \(\epsilon =T/T_c-1\) where \(T_c\) stands for the critical temperature of the phase transition.

  3. 3.

    There is in principle no underlying reason to assume that these exponents take the same value at both sides of the critical point, however, the inspection of phase transitions in most systems teaches us that this is actually the case. Nevertheless, since \(m= 0\) in the disordered phase, it is evident that \(\beta \) is, by definition, an exception. It is worth mentioning however that there are special situations where \(\kappa _{+}\ne \kappa _{-}\).

  4. 4.

    Note that an anti-ferromagnetic Ising model with zero external field can be mapped onto its ferromagnetic counterpart by redefining spin variables as \(\tilde{\sigma }_i=(-1)^i\sigma _i\).

References

  1. K. Huang, Statistical Mechanics (Wiley, New York, 1987)

    MATH  Google Scholar 

  2. P.W. Anderson, More is different. Science 177, 393 (1972). https://doi.org/10.1126/science.177.4047.393

    Article  ADS  Google Scholar 

  3. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley-VCH, Berlin Heidelberg, 2005)

    MATH  Google Scholar 

  4. A. Messiah, Quantum Mechanics (Dover Publications, New York, 1961)

    MATH  Google Scholar 

  5. S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, UK, 2011)

    Book  Google Scholar 

  6. M. Vojta, Quantum phase transitions. Rep. Prog. Phys. 66, 2069 (2003), http://stacks.iop.org/0034-4885/66/i=12/a=R01

    Article  ADS  MathSciNet  Google Scholar 

  7. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982). https://doi.org/10.1007/BF02650179

    Article  MathSciNet  Google Scholar 

  8. E. Schrödinger, Are there quantum jumps? Part II. Brit. J. Phil. Sci. 3, 233 (1952), http://www.jstor.org/stable/685266

  9. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971)

    Google Scholar 

  10. J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, UK, 1996)

    Book  Google Scholar 

  11. G. Jaeger, The Ehrenfest classification of phase transitions: introduction and evolution. Arch. Hist. Exact Sci. 53, 51 (1998). https://doi.org/10.1007/s004070050021

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944). https://doi.org/10.1103/PhysRev.65.117

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973), http://stacks.iop.org/0022-3719/6/i=7/a=010

    Article  ADS  Google Scholar 

  14. R. Balescu, Statistical Dynamics: Matter Out of Equilibrium (Imperial College Press, London, 1997)

    Book  Google Scholar 

  15. P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977). https://doi.org/10.1103/RevModPhys.49.435

    Article  ADS  Google Scholar 

  16. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011). https://doi.org/10.1103/RevModPhys.83.863

    Article  ADS  Google Scholar 

  17. U.C. Taeuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-equilibrium Scaling Behavior (Cambridge University Press, Cambridge, UK, 2014)

    Google Scholar 

  18. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000)

    MATH  Google Scholar 

  19. A.K. Chandra, A. Das, and B.K.C. (eds.), Quantum Quenching, Annealing and Computation (Springer, Berlin Heidelberg, 2010)

    MATH  Google Scholar 

  20. A. del Campo, W.H. Zurek, Universality of phase transition dynamics: topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014). https://doi.org/10.1142/S0217751X1430018X

    Article  Google Scholar 

  21. M.-J. Hwang, R. Puebla, M.B. Plenio, Quantum phase transition and universal dynamics in the Rabi model. Phys. Rev. Lett. 115, 180404 (2015). https://doi.org/10.1103/PhysRevLett.115.180404

    Article  ADS  Google Scholar 

  22. R. Puebla, M.-J. Hwang, M.B. Plenio, Excited-state quantum phase transition in the Rabi model. Phys. Rev. A 94, 023835 (2016a). https://doi.org/10.1103/PhysRevA.94.023835

    Article  ADS  Google Scholar 

  23. R. Puebla, J. Casanova, M.B. Plenio, A robust scheme for the implementation of the quantum Rabi model in trapped ions. New J. Phys. 18, 113039 (2016b), http://stacks.iop.org/1367-2630/18/i=11/a=113039

    Article  ADS  Google Scholar 

  24. R. Puebla, M.-J. Hwang, J. Casanova, M.B. Plenio, Probing the dynamics of a superradiant quantum phase transition with a single trapped ion. Phys. Rev. Lett. 118, 073001 (2017a). https://doi.org/10.1103/PhysRevLett.118.073001

    Article  ADS  Google Scholar 

  25. R. Puebla, R. Nigmatullin, T.E. Mehlstäubler, M.B. Plenio, Fokker-Planck formalism approach to Kibble-Zurek scaling laws and nonequilibrium dynamics. Phys. Rev. B 95, 134104 (2017b). https://doi.org/10.1103/PhysRevB.95.134104

    Article  ADS  Google Scholar 

  26. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. (Butterworth-Heinemann, Oxford, 1980)

    MATH  Google Scholar 

  27. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley, 1992)

    Google Scholar 

  28. J.G. Brankov, Introduction to Finite-Size Scaling (Leuven University Press, Leuven, 1996)

    Google Scholar 

  29. M.E. Fisher, M.N. Barber, Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett. 28, 1516 (1972). https://doi.org/10.1103/PhysRevLett.28.1516

    Article  ADS  Google Scholar 

  30. K.G. Wilson, Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3174 (1971). https://doi.org/10.1103/PhysRevB.4.3174

    Article  ADS  MATH  Google Scholar 

  31. H.E. Stanley, Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358 (1999). https://doi.org/10.1103/RevModPhys.71.S358

    Article  Google Scholar 

  32. S.G. Brush, History of the Lenz-Ising model. Rev. Mod. Phys. 39, 883 (1967). https://doi.org/10.1103/RevModPhys.39.883

    Article  ADS  Google Scholar 

  33. E. Ising, Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253 (1925). https://doi.org/10.1007/BF02980577

    Article  ADS  Google Scholar 

  34. C.N. Yang, The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808 (1952). https://doi.org/10.1103/PhysRev.85.808

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1989)

    MATH  Google Scholar 

  36. P. Jordan, E. Wigner, Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631 (1928). https://doi.org/10.1007/BF01331938

    Article  ADS  MATH  Google Scholar 

  37. J. Eisert, M. Friesdorf, C. Gogolin, Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124 (2015). https://doi.org/10.1038/nphys3215

    Article  Google Scholar 

  38. T.W.B. Kibble, Topology of cosmic domains and strings. J. Phys. A Math. Gen. 9, 1387 (1976), http://stacks.iop.org/0305-4470/9/i=8/a=029

    Article  ADS  Google Scholar 

  39. T.W.B. Kibble, Some implications of a cosmological phase transition. Phys. Rep. 67, 183 (1980). https://doi.org/10.1016/0370-1573(80)90091-5

    Article  ADS  MathSciNet  Google Scholar 

  40. T.W.B. Kibble, Phase-transition dynamics in the lab and the universe. Phys. Today 60, 47 (2007). https://doi.org/10.1063/1.2784684

    Article  Google Scholar 

  41. W.H. Zurek, Cosmological experiments in superfluid helium? Nature 317, 505 (1985). https://doi.org/10.1038/317505a0

    Article  ADS  Google Scholar 

  42. W. Zurek, Cosmological experiments in condensed matter systems. Phys. Rep. 276, 177 (1996). https://doi.org/10.1016/S0370-1573(96)00009-9

    Article  ADS  Google Scholar 

  43. P. Laguna, W.H. Zurek, Density of kinks after a quench: when symmetry breaks, how big are the pieces? Phys. Rev. Lett. 78, 2519 (1997). https://doi.org/10.1103/PhysRevLett.78.2519

    Article  ADS  Google Scholar 

  44. P. Laguna, W.H. Zurek, Critical dynamics of symmetry breaking: quenches, dissipation, and cosmology. Phys. Rev. D 58, 085021 (1998). https://doi.org/10.1103/PhysRevD.58.085021

    Article  ADS  Google Scholar 

  45. W.H. Zurek, Topological relics of symmetry breaking: winding numbers and scaling tilts from random vortex-antivortex pairs. J. Phys. Condens. Matter 25, 404209 (2013), http://stacks.iop.org/0953-8984/25/i=40/a=404209

    Google Scholar 

  46. W.H. Zurek, Causality in condensates: gray solitons as relics of BEC formation. Phys. Rev. Lett. 102, 105702 (2009). https://doi.org/10.1103/PhysRevLett.102.105702

    Article  ADS  Google Scholar 

  47. R. Nigmatullin, A. del Campo, G. De Chiara, G. Morigi, M.B. Plenio, A. Retzker, Formation of helical ion chains. Phys. Rev. B 93, 014106 (2016). https://doi.org/10.1103/PhysRevB.93.014106

    Article  ADS  Google Scholar 

  48. A. del Campo, G. De Chiara, G. Morigi, M.B. Plenio, A. Retzker, Structural defects in ion chains by quenching the external potential: the inhomogeneous Kibble-Zurek mechanism. Phys. Rev. Lett. 105, 075701 (2010). https://doi.org/10.1103/PhysRevLett.105.075701

    Article  ADS  Google Scholar 

  49. G. De Chiara, A. del Campo, G. Morigi, M.B. Plenio, A. Retzker, Spontaneous nucleation of structural defects in inhomogeneous ion chains. New J. Phys. 12, 115003 (2010), http://stacks.iop.org/1367-2630/12/i=11/a=115003

    Article  ADS  Google Scholar 

  50. A. del Campo, A. Retzker, M.B. Plenio, The inhomogeneous Kibble-Zurek mechanism: vortex nucleation during Bose-Einstein condensation. New J. Phys. 13, 083022 (2011), http://stacks.iop.org/1367-2630/13/i=8/a=083022

  51. S.-Z. Lin, X. Wang, Y. Kamiya, G.-W. Chern, F. Fan, D. Fan, B. Casas, Y. Liu, V. Kiryukhin, W.H. Zurek, C.D. Batista, S.-W. Cheong, Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics. Nat. Phys. 10, 970 (2014). https://doi.org/10.1038/nphys3142

    Article  Google Scholar 

  52. K. Pyka, J. Keller, H.L. Partner, R. Nigmatullin, T. Burgermeister, D.M. Meier, K. Kuhlmann, A. Retzker, M.B. Plenio, W.H. Zurek, A. del Campo, T.E. Mehlstäubler, Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals. Nat. Commun. 4, 2291 (2013). https://doi.org/10.1038/ncomms3291

    Article  Google Scholar 

  53. S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S.T. Dawkins, U.G. Poschinger, R. Nigmatullin, A. Retzker, M.B. Plenio, F. Schmidt-Kaler, K. Singer, Observation of the Kibble-Zurek scaling law for defect formation in ion crystals. Nat. Commun. 4, 2290 (2013). https://doi.org/10.1038/ncomms3290

    Article  ADS  Google Scholar 

  54. N. Navon, A.L. Gaunt, R.P. Smith, Z. Hadzibabic, Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 347, 167 (2015). https://doi.org/10.1126/science.1258676

    Article  ADS  Google Scholar 

  55. B. Damski, The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective. Phys. Rev. Lett. 95, 035701 (2005). https://doi.org/10.1103/PhysRevLett.95.035701

    Article  ADS  Google Scholar 

  56. W.H. Zurek, U. Dorner, P. Zoller, Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005). https://doi.org/10.1103/PhysRevLett.95.105701

    Article  ADS  Google Scholar 

  57. J. Dziarmaga, Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005). https://doi.org/10.1103/PhysRevLett.95.245701

    Article  ADS  Google Scholar 

  58. A. Polkovnikov, Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201 (2005). https://doi.org/10.1103/PhysRevB.72.161201

    Article  ADS  Google Scholar 

  59. M. Anquez, B.A. Robbins, H.M. Bharath, M. Boguslawski, T.M. Hoang, M.S. Chapman, Quantum Kibble-Zurek mechanism in a spin-1 Bose-Einstein condensate. Phys. Rev. Lett. 116, 155301 (2016). https://doi.org/10.1103/PhysRevLett.116.155301

    Article  ADS  Google Scholar 

  60. L.W. Clark, L. Feng, C. Chin, Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science 354, 606 (2016). https://doi.org/10.1126/science.aaf9657

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. N.D. Antunes, P. Gandra, R.J. Rivers, Is domain formation decided before or after the transition? Phys. Rev. D 73, 125003 (2006). https://doi.org/10.1103/PhysRevD.73.125003

    Article  ADS  Google Scholar 

  62. J. Dziarmaga, P. Laguna, W.H. Zurek, Symmetry breaking with a slant: topological defects after an inhomogeneous quench. Phys. Rev. Lett. 82, 4749 (1999). https://doi.org/10.1103/PhysRevLett.82.4749

    Article  ADS  Google Scholar 

  63. S. Deng, G. Ortiz, L. Viola, Anomalous nonergodic scaling in adiabatic multicritical quantum quenches. Phys. Rev. B 80, 241109 (2009). https://doi.org/10.1103/PhysRevB.80.241109

    Article  ADS  Google Scholar 

  64. G. Nikoghosyan, R. Nigmatullin, M.B. Plenio, Universality in the dynamics of second-order phase transitions. Phys. Rev. Lett. 116, 080601 (2016). https://doi.org/10.1103/PhysRevLett.116.080601

    Article  ADS  Google Scholar 

  65. M. Kolodrubetz, B.K. Clark, D.A. Huse, Nonequilibrium dynamic critical scaling of the quantum Ising chain. Phys. Rev. Lett. 109, 015701 (2012). https://doi.org/10.1103/PhysRevLett.109.015701

    Article  ADS  Google Scholar 

  66. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, 2nd edn. (Springer, New York, 1984)

    Book  Google Scholar 

  67. T. Caneva, R. Fazio, G.E. Santoro, Adiabatic quantum dynamics of the Lipkin-Meshkov-Glick model. Phys. Rev. B 78, 104426 (2008). https://doi.org/10.1103/PhysRevB.78.104426

    Article  ADS  Google Scholar 

  68. O.L. Acevedo, L. Quiroga, F.J. Rodríguez, N.F. Johnson, New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions. Phys. Rev. Lett. 112, 030403 (2014). https://doi.org/10.1103/PhysRevLett.112.030403

    Article  ADS  Google Scholar 

  69. J.S. Pedernales, I. Lizuain, S. Felicetti, G. Romero, L. Lamata, E. Solano, Quantum Rabi model with trapped ions. Sci. Rep. 5, 15472 (2015). https://doi.org/10.1038/srep15472

    Article  ADS  Google Scholar 

  70. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003). https://doi.org/10.1103/RevModPhys.75.281

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Puebla .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puebla, R. (2018). Introduction. In: Equilibrium and Nonequilibrium Aspects of Phase Transitions in Quantum Physics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00653-2_1

Download citation

Publish with us

Policies and ethics