Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 191 Accesses

Abstract

In the first part of this chapter, a brief introduction into the Standard Model of particle physics and its interactions is given. This is followed by a discussion of the formalism which is needed to describe proton–proton (pp) collisions. Also the extraction of the needed ingredients to predict the outcome of these collisions is described, followed by a discussion of the Drell–Yan and photon induced process. Finally, the limitations and problems of the Standard Model are discussed and some theories which aim to solve these limitations are presented. The chapter ends with a discussion of models predicting new physics in the final state of a charged lepton and neutrino. The discussion follows to large parts the discussion in (Zinser M, Double differential cross section for Drell–Yan production of high-mass e\(^{+}\)e\(^{-}\)-pairs in pp collisions at \(\sqrt{s} =\) 8 TeV with the ATLAS experiment, 2013)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a difference whether a fermion has left-handed or right-handed chirality. This is discussed in more detail in Sect. 2.1.5.

  2. 2.

    In this thesis the time axis is always along the abscissa.

  3. 3.

    There are additional loop diagrams which lead to the running of the masses of the leptons.

  4. 4.

    \(N_C=3\) is the number of color charges.

  5. 5.

    For using all flavors up to the b-quark.

  6. 6.

    Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equations.

  7. 7.

    Tevatron is a proton-antiproton collider at Fermilab and was operated at \(\sqrt{s} = 1.8\) TeV and \(\sqrt{s} = 1.96\) TeV.

  8. 8.

    Meaning that they have spin 1/2 and both, a neutrino and an anti-neutrino exists.

  9. 9.

    The graviton is the hypothetical mediator of the gravitational force.

References

  1. Zinser M (2013) Double differential cross section for Drell-Yan production of high-mass e\(^{+}\)e\(^{-}\)-pairs in \(pp\) collisions at \(\sqrt{s} =\) 8 TeV with the ATLAS experiment. MA thesis, Mainz U., 2013-08-07. http://inspirehep.net/record/1296478/files/553896852$_$CERN-THESIS-2013-258.pdf

  2. Halzen F, Martin A (1984) Quarks and leptons: an introductory course in modern particle physics. Wiley, New York. isbn: 978-0471887416

    Google Scholar 

  3. Fukuda Y et al (1998) Evidence for oscillation of atmospheric neutrinos. Phys Rev Lett 81: 1562–1567. https://doi.org/10.1103/PhysRevLett.81.1562, arXiv:hep-ex/9807003 [hep-ex]

    Article  ADS  Google Scholar 

  4. Bonn J (2002) Limits on neutrino masses from tritium \(\beta \) decay. Nucl Phys Proc Suppl 110:395–397. https://doi.org/10.1016/S0920-5632(02)01520-7

    Article  ADS  Google Scholar 

  5. Goobar A et al (2006) A new bound on the neutrino mass from the sdss baryon acoustic peak. JCAP 0606: 019. https://doi.org/10.1088/1475-7516/2006/06/019, arXiv:astro-ph/0602155 [astro-ph]

    Article  ADS  Google Scholar 

  6. Aaij R et al (2014) Observation of the resonant character of the \(Z(4430)^{-}\) state. Phys Rev Lett 112.22: 222002. https://doi.org/10.1103/PhysRevLett.112.222002, arXiv:1404.1903 [hep-ex]

  7. Ablikim M et al (2013) Observation of a charged Charmoniumlike structure in \(e^{+}e^{-}\rightarrow \pi ^{+}\pi ^{-} J/\psi \) at \(\sqrt{s}=\) 4.26 GeV. Phys Rev Lett 110: 252001. https://doi.org/10.1103/PhysRevLett.110.252001, arXiv: 1303.5949 [hep-ex]

  8. Aaij R et al (2015) Observation of \(J/\psi \) resonances consistent with pentaquark states in \(\Lambda _{b}^{0}\rightarrow J/\psi K^{-}p\) decays. Phys Rev Lett. 115: 072001. https://doi.org/10.1103/PhysRevLett.115.072001, arXiv:1507.03414 [hep-ex]

  9. Beringer J (2012) Review of particle physics (RPP). Phys Rev D86:010001. https://doi.org/10.1103/PhysRevD.86.010001

    Article  ADS  Google Scholar 

  10. Peskin ME, Schroeder DV (1995) An introduction to quantum field theory. Addison-Wesley, Boston. isbn: 978-0-201-50397-5

    Google Scholar 

  11. Noether E (1918) Invariante Variationsprobleme. ger. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. pp. 235–257. http://eudml.org/doc/59024

  12. Feynman RP (1949) The theory of positrons. Phys Rev 76. https://doi.org/10.1103/PhysRev.76.749

    Article  ADS  MATH  Google Scholar 

  13. Orear J, Fermi E (1950) Nuclear physics: a course given by enrico fermi at the university of Chicago. University of Chicago Press, Chicago

    Google Scholar 

  14. Brock R et al (1994) Handbook of perturbative QCD; Version 1.1. Rev Mod Phys

    Google Scholar 

  15. Glashow S (1961) Partial symmetries of weak interactions. Nucl Phys 22:579–588. https://doi.org/10.1016/0029-5582(61)90469-2

    Article  Google Scholar 

  16. Salam A (1968) Weak and electromagnetic interactions. Conf Proc C680519:367–377

    Google Scholar 

  17. Weinberg S (1967) A Model of Leptons. Phys Rev Lett 19:1264–1266. https://doi.org/10.1103/PhysRevLett.19.1264

    Article  ADS  Google Scholar 

  18. Heisenberg W (1932) Über den Bau der Atomkerne. I. Zeitschrift für Physik 77: 1–2. https://doi.org/10.1007/BF01342433

  19. Griffiths D (2008) Introduction to elementary particles. Wiley, New York. isbn: 978-3-527-40601-2

    Google Scholar 

  20. Arnison G (1983) Experimental observation of isolated large transverse energy electrons with associated missing energy at sqrt(s) \(=\) 540 GeV. Phys Lett B 122:103–116. https://doi.org/10.1016/0370-2693(83)91177-2

    Article  ADS  Google Scholar 

  21. Banner M (1983) Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN anti-p p collider. Phys Lett B 122:476–485. https://doi.org/10.1016/0370-2693(83)91605-2

    Article  ADS  Google Scholar 

  22. Arnison G (1983) Experimental observation of lepton pairs of invariant mass around 95-GeV/\(\rm c^{2}\) at the CERN SPS collider. Phys Lett B 126:398–410. https://doi.org/10.1016/0370-2693(83)90188-0

    Article  ADS  Google Scholar 

  23. Bagnaia P (1983) Evidence for Z0\(\rightarrow \) e+ e- at the CERN anti-p p collider. Phys Lett B 129:130–140. https://doi.org/10.1016/0370-2693(83)90744-X

    Article  ADS  Google Scholar 

  24. Higgs PW (1964) Broken symmetries, massless particles and gauge fields. Phys Lett 12:132–133. https://doi.org/10.1016/0031-9163(64)91136-9

    Article  ADS  Google Scholar 

  25. Hollik W (2006) Electroweak theory. J Phys Conf Ser 53:7–43. https://doi.org/10.1088/1742-6596/53/1/002

    Article  ADS  Google Scholar 

  26. Aad G et al (2012) Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett B716: 1–29. https://doi.org/10.1016/j.physletb.2012.08.020. arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  27. Chatrchyan S et al (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B716: 30–61. https://doi.org/10.1016/j.physletb.2012.08.021. arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  28. Aad G et al (2015) Combined measurement of the higgs boson mass in \(pp\) collisions at \(\sqrt{s} =\) 7 and 8 TeV with the ATLAS and CMS experiments. Phys Rev Lett 114: 191803. https://doi.org/10.1103/PhysRevLett.114.191803, arXiv:1503.07589 [hep-ex]

  29. Campbell JM, Huston J, Stirling W (2007) Hard interactions of quarks and gluons: a primer for LHC physics. Rep Prog Phys 70: 89. https://doi.org/10.1088/0034-4885/70/1/R02, arXiv:hep-ph/0611148 [hep-ph]

    Article  ADS  Google Scholar 

  30. Drell S, Yan T-M (1971) Partons and their applications at high-energies. Ann Phys 66: 578. https://doi.org/10.1016/0003-4916(71)90071-6

    Article  ADS  Google Scholar 

  31. Feynman RP (1969) The behavior of hadron collisions at extreme energies. Conf Proc C690905:237–258

    Google Scholar 

  32. Altarelli G, Parisi G (1977) Asymptotic freedom in parton language. Nucl Phys B126:298. https://doi.org/10.1016/0550-3213(77)90384-4

    Article  ADS  Google Scholar 

  33. Vogt A, Moch S, Vermaseren J (2004) The Three-loop splitting functions in QCD: the singlet case. Nucl Phys B691: 129–181. https://doi.org/10.1016/j.nuclphysb.2004.04.024, arXiv:hep-ph/0404111 [hep-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Adloff C et al (2000) Measurement of neutral and charged current cross-sections in positron proton collisions at large momentum transfer’. Eur Phys J C13: 609–639. https://doi.org/10.1007/s100520050721. arXiv:hep-ex/9908059 [hep-ex]

    Article  ADS  Google Scholar 

  35. Chekanov S et al (2001) Measurement of the neutral current cross-section and F(2) structure function for deep inelastic e + p scattering at HERA. Eur Phys J C21: 443–471. https://doi.org/10.1007/s100520100749, arXiv:hep-ex/0105090 [hep-ex]

  36. Towell R et al (2001) Improved measurement of the anti-d/anti-u asymmetry in the nucleon sea. Phys Rev D64: 052002. https://doi.org/10.1103/PhysRevD.64.052002, arXiv:hep-ex/0103030 [hep-ex]

  37. Aad G et al (2011) Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector. Eur Phys J C71: 1512. https://doi.org/10.1140/epjc/s10052-010-1512-2, arXiv:1009.5908 [hep-ex]

  38. Aad G et al (2015) Measurement of four-jet differential cross sections in \(\sqrt{s}=\) 8 TeV proton–proton collisions using the ATLAS detector. JHEP 12: 105. https://doi.org/10.1007/JHEP12(2015)105, arXiv:1509.07335 [hep-ex]

    Google Scholar 

  39. Pumplin J et al (2001) Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys Rev D65: 014013. https://doi.org/10.1103/PhysRevD.65.014013, arXiv:hep-ph/0101032 [hep-ph]

  40. Martin et al AD (2009) Parton distributions for the LHC. Eur Phys J C 63: 189. https://doi.org/10.1140/epjc/s10052-009-1072-5. arXiv:0901.0002 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  41. Stirling W Private communication

    Google Scholar 

  42. Martin AD et al (2005) Parton distributions incorporating QED contributions. Eur Phys J C 39: 155. https://doi.org/10.1140/epjc/s2004-02088-7, arXiv:hep-ph/0411040 [hep-ph]

  43. Ball RD et al (2013) Parton distributions with QED corrections. Nucl Phys B877: 290–320. https://doi.org/10.1016/j.nuclphysb.2013.10.010, arXiv:1308.0598 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  44. Schmidt C et al (2015) CT14QED PDFs from isolated photon production in deep inelastic scattering. arXiv: 1509.02905 [hep-ph]

  45. Bodek A (2001) Measurement of d sigma/d y for high mass drell-yan e+ e- pairs at CDF. Int J Mod Phys A16S1A: 262–264. arXiv: hep-ex/0009067 [hep-ex]

  46. Abazov V et al (2007) Measurement of the shape of the boson rapidity distribution for \(p\bar{p}\rightarrow Z/gamma*\rightarrow e^{+}e^{-} + X\) events produced at \(\sqrt{s}\) of 1.96-TeV. Phys Rev D76: 012003. https://doi.org/10.1103/PhysRevD.76.012003, arXiv:hep-ex/0702025 [HEP-EX]

  47. Aaltonen TA et al (2010) Measurement of \(d\sigma /dy\) of Drell-Yan \(e^{+}e^{-}\) pairs in the Z Mass Region from \(p\bar{p}\) Collisions at \(\sqrt{s}=\) 1:96 TeV. Phys Lett B692: 232–239. https://doi.org/10.1016/j.physletb.2010.06.043. arXiv:0908.3914 [hep-ex]

    Article  ADS  Google Scholar 

  48. Chatrchyan S et al (2011) Measurement of the Drell-Yan cross section in \(pp\) collisions at \(\sqrt{s} =\) 7 TeV. JHEP 1110: 007. https://doi.org/10.1007/JHEP10(2011)007, arXiv:1108.0566 [hep-ex]

  49. Chatrchyan S et al (2013) Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at \(\sqrt{s} =\) 7 TeV. JHEP 12: 030. https://doi.org/10.1007/JHEP12(2013)030, arXiv:1310.7291 [hep-ex]

  50. Khachatryan V et al (2015) Measurements of differential and double-differential Drell-Yan cross sections in proton–proton collisions at 8 TeV. Eur Phys J C75.4: 147. https://doi.org/10.1140/epjc/s10052-015-3364-2, arXiv:1412.1115 [hep-ex]

  51. Aad G et al (2013) Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at sqrt(s)\(=\) 7 TeV with the ATLAS detector. Phys Lett B725: 223–242. https://doi.org/10.1016/j.physletb.2013.07.049, arXiv:1305.4192 [hep-ex]

    Article  ADS  Google Scholar 

  52. Hanneke D, Hoogerheide SF, Gabrielse G (2011) Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment. Phys Rev A83: 052122. https://doi.org/10.1103/PhysRevA.83.052122, arXiv: 1009.4831 [physics.atom-ph]

  53. Aoyama T et al (2012) Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. Phys Rev Lett 109: 111807. https://doi.org/10.1103/PhysRevLett.109.111807. arXiv:1205.5368 [hep-ph]

  54. Rubin VC, Ford WK Jr (1970) Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophys J 159:379–403. https://doi.org/10.1086/150317

    Article  ADS  Google Scholar 

  55. Hinshaw G et al (2009) Five-year Wilkinson microwave anisotropy probe (WMAP) observations: data processing, sky maps, and basic results. Astrophys J Suppl 180: 225–245. https://doi.org/10.1088/0067-0049/180/2/225, arXiv:0803.0732 [astro-ph]

    Article  ADS  Google Scholar 

  56. Clowe D et al (2006) A direct empirical proof of the existence of dark matter. Astrophys J 648: L109–L113. https://doi.org/10.1086/508162, arXiv:astro-ph/0608407 [astro-ph]

    Article  ADS  Google Scholar 

  57. Ade PAR et al (2014) ‘Planck 2013 results. I. overview of products and scientific results. Astron Astrophys 571: A1. https://doi.org/10.1051/0004-6361/201321529, arXiv:1303.5062 [astro-ph.CO]

  58. Georgi H, Glashow SL (1974) Unity of all elementary particle forces. Phys Rev Lett 32:438–441. https://doi.org/10.1103/PhysRevLett.32.438

    Article  ADS  Google Scholar 

  59. Martin SP (1997) A Supersymmetry primer. [Adv Ser Direct High Energy Phys 18: 1(1998)]. https://doi.org/10.1142/9789812839657_0001,10.1142/9789814307505_0001, arXiv:hep-ph/9709356 [hep-ph]

  60. Arkani-Hamed N, Dimopoulos S, Dvali GR (1998) The hierarchy problem and new dimensions at a millimeter. Phys Lett B429: 263–272. https://doi.org/10.1016/S0370-2693(98)00466-3, arXiv: hep-ph/9803315 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  61. Randall L, Sundrum R (1999) A large mass hierarchy from a small extra dimension. Phys Rev Lett 83: 3370–3373. https://doi.org/10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221 [hep-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Senjanovic G, Mohapatra RN (1975) Exact left-right symmetry and spontaneous violation of parity. Phys Rev D 12:1502. https://doi.org/10.1103/PhysRevD.12.1502

    Article  ADS  Google Scholar 

  63. Maiezza A et al (2010) Left-right symmetry at LHC. Phys Rev D82: 055022. https://doi.org/10.1103/PhysRevD.82.055022, arXiv:1005.5160 [hep-ph]

  64. Mohapatra RN, Senjanovic G (1980) Neutrino mass and spontaneous parity violation. Phys Rev Lett 44:912. https://doi.org/10.1103/PhysRevLett.44.912

    Article  ADS  Google Scholar 

  65. Polchinski J (1994) What is string theory? NATO Advanced Study Institute: Les Houches Summer School, Session 62: fluctuating geometries in statistical mechanics and field theory Les Houches, France, August 2–September 9 1994. arXiv: hep-th/9411028 [hep-th]

  66. Beltran M et al (2010) Maverick dark matter at colliders. JHEP 09: 037. https://doi.org/10.1007/JHEP09(2010)037, arXiv:1002.4137 [hep-ph]

  67. Rajaraman A et al (2011) LHC bounds on interactions of dark matter. Phys Rev D84: 095013. https://doi.org/10.1103/PhysRevD.84.095013, arXiv:1108.1196 [hep-ph]

  68. Fox PJ et al (2012) Missing energy signatures of dark matter at the LHC. Phys Rev D85: 056011. https://doi.org/10.1103/PhysRevD.85.056011, arXiv:1109.4398 [hep-ph]

  69. Cotta RC et al (2013) Bounds on dark matter interactions with electroweak Gauge Bosons. Phys Rev D88: 116009. https://doi.org/10.1103/PhysRevD.88.116009, arXiv:1210.0525 [hep-ph]

  70. Goodman J et al (2010) Constraints on dark matter from colliders. Phys Rev D82: 116010. https://doi.org/10.1103/PhysRevD.82.116010, arXiv:1008.1783 [hep-ph]

  71. Aad G et al (2014) Search for new particles in events with one lepton and missing transverse momentum in pp collisions at \(\sqrt{s} =\) 8 TeV with the ATLAS detector. JHEP 09: 037. https://doi.org/10.1007/JHEP09(2014)037, arXiv:1407.7494 [hep-ex]

  72. Khachatryan V et al (2015) Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at sqrt(s) \(=\) 8 TeV. Phys Rev D91.9: 092005. https://doi.org/10.1103/PhysRevD.91.092005, arXiv:1408.2745 [hep-ex]

  73. Abercrombie D et al (2015) In: Boveia A et al (ed) Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum. arXiv: 1507.00966 [hep-ex]

  74. Haisch U, Re E (2015) Simplified dark matter top-quark interactions at the LHC. JHEP 06: 078. https://doi.org/10.1007/JHEP06(2015)078. arXiv:1503.00691 [hep-ph]

  75. Arina C et al (2015) Constraints on sneutrino dark matter from LHC Run 1. JHEP 05: 142. https://doi.org/10.1007/JHEP05(2015)142, arXiv:1503.02960 [hep-ph]

  76. M. V. Chizhov and G. Dvali. ‘Origin and Phenomenology of Weak-Doublet Spin-1 Bosons’. In: Phys. Lett. B703 (2011), pp. 593–598. doi: https://doi.org/10.1016/j.physletb.2011.08.056.arXiv: 0908.0924 [hep-ph]

  77. Chizhov MV, Dvali G (2011) Origin and phenomenology of weak-doublet spin-1 bosons. Phys Lett B703: 593–598. https://doi.org/10.1016/j.physletb.2011.08.056, arXiv:0908.0924 [hep-ph]

    Article  ADS  Google Scholar 

  78. Altarelli G, Mele B, Ruiz-Altaba M (1989) Searching for new heavy vector bosons in \(p\bar{p}\) colliders. Z Phys C45: 109 [Erratum: Z Phys C47,676 (1990)]. https://doi.org/10.1007/BF01552335, https://doi.org/10.1007/BF01556677

  79. Accomando E et al (2012) Interference effects in heavy W’-boson searches at the LHC. Phys Rev D85: 115017. https://doi.org/10.1103/PhysRevD.85.115017, arXiv:1110.0713 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zinser .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zinser, M. (2018). Theory Foundations. In: Search for New Heavy Charged Bosons and Measurement of High-Mass Drell-Yan Production in Proton—Proton Collisions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00650-1_2

Download citation

Publish with us

Policies and ethics