Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 183 Accesses

Abstract

The concept of elementary particles forming all matter is very old and goes back to the atomic hypothesis first formulated by Democritus around 400 BC. It took around 2300 years until technological progress allowed for the discovery of the first elementary particle (Thomson JJ, Cathode rays, 1987). The following discovery of the atomic nucleus in 1911 and later the proton by Rutherford (Rutherford E, The scattering of alpha and beta particles by matter and the structure of the atom, 1911) and in 1932 of the neutron by Chadwick (Chadwick J, Possible existence of a neutron, 1932) seemed to complete the picture and to allow the explanation of matter formed in atoms by fundamental particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JJ (1897) Cathode rays. Philos Mag 44:293–316. https://doi.org/10.1080/14786449708621070

    Article  Google Scholar 

  2. Rutherford E (1911) The scattering of alpha and beta particles by matter and the structure of the atom. Philos Mag 21:669–688. https://doi.org/10.1080/14786440508637080

    Article  MATH  Google Scholar 

  3. Chadwick J (1932) Possible existence of a neutron. Nature 129:312. https://doi.org/10.1038/129312a0

    Article  ADS  Google Scholar 

  4. Gell-Mann M (1964) A schematic model of baryons and mesons. Phys Lett 8:214–215. https://doi.org/10.1016/S0031-9163(64)92001-3

    Article  ADS  Google Scholar 

  5. Zweig G (1964) An SU(3) model for strong interaction symmetry and its breaking. Version 2. In: Lichtenberg D, Rosen SP (eds) Developments in the quark theory of hadrons. Vol. 1. 1964–1978, pp 22–101. http://inspirehep.net/record/4674/files/cern-th-412.pdf

  6. Barnes VE (1964) Observation of a Hyperon with Strangeness -3. Phys Rev Lett 12:204–206. https://doi.org/10.1103/PhysRevLett.12.204

    Article  ADS  Google Scholar 

  7. Breidenbach M (1969) Observed Behavior of Highly Inelastic electron-Proton Scattering. Phys Rev Lett 23:935–939. https://doi.org/10.1103/PhysRevLett.23.935

    Article  ADS  Google Scholar 

  8. Bloom ED (1969) High-energy inelastic e p scattering at 6-degrees and 10-degrees. Phys Rev Lett 23:930–934. https://doi.org/10.1103/PhysRevLett.23.930

    Article  ADS  Google Scholar 

  9. Brandelik R (1979) Evidence for planar events in e+ e- Annihilation at high-energies. Phys Lett B 86:243–249. https://doi.org/10.1016/0370-2693(79)90830-X

    Article  ADS  Google Scholar 

  10. Barber DP (1979) Discovery of three jet events and a test of quantum chromodynamics at PETRA energies. Phys Rev Lett 43:830. https://doi.org/10.1103/PhysRevLett.43.830

    Article  ADS  Google Scholar 

  11. Berger C (1979) Evidence for gluon bremsstrahlung in e+ e- Annihilations at high-energies. Phys Lett B 86:418–425. https://doi.org/10.1016/0370-2693(79)90869-4

    Article  ADS  Google Scholar 

  12. Bartel W (1980) Observation of planar three jet events in e+ e- Annihilation and evidence for gluon bremsstrahlung. Phys Lett B 91:142–147. https://doi.org/10.1016/0370-2693(80)90680-2

    Article  ADS  Google Scholar 

  13. Arnison G (1983) Experimental observation of isolated large transverse energy electrons with associated missing energy at \(\sqrt{(}s)=540\) GeV. Phys Lett B 122:103–116. https://doi.org/10.1016/0370-2693(83)91177-2

    Article  ADS  Google Scholar 

  14. Banner M (1983) Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN anti-p p collider. Phys Lett B 122:476–485. https://doi.org/10.1016/0370-2693(83)91605-2

    Article  ADS  Google Scholar 

  15. Arnison G (1983) Experimental observation of lepton pairs of invariant mass around 95-GeV/c\(^2\) at the CERN SPS collider. Phys Lett B 126:398–410. https://doi.org/10.1016/0370-2693(83)90188-0

    Article  ADS  Google Scholar 

  16. Bagnaia P (1983) Evidence for Z0 \(\rightarrow {\rm e}+ {\rm e}-\) at the CERN anti-p p collider. Phys Lett B 129:130–140. https://doi.org/10.1016/0370-2693(83)90744-X

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zinser .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zinser, M. (2018). Preamble. In: Search for New Heavy Charged Bosons and Measurement of High-Mass Drell-Yan Production in Proton—Proton Collisions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00650-1_1

Download citation

Publish with us

Policies and ethics