Fluctuations in Active Membranes

  • Hervé TurlierEmail author
  • Timo Betz


Active contributions to fluctuations are a direct consequence of metabolic energy consumption in living cells. Such metabolic processes continuously create active forces, which deform the membrane to control motility, proliferation as well as homeostasis. Membrane fluctuations contain therefore valuable information on the nature of active forces, but classical analysis of membrane fluctuations has been primarily centered on purely thermal driving. This chapter provides an overview of relevant experimental and theoretical approaches to measure, analyze, and model active membrane fluctuations. In the focus of the discussion remains the intrinsic problem that the sole fluctuation analysis may not be sufficient to separate active from thermal contributions, since the presence of activity may modify membrane mechanical properties themselves. By combining independent measurements of spontaneous fluctuations and mechanical response, it is possible to directly quantify time and energy-scales of the active contributions, allowing for a refinement of current theoretical descriptions of active membranes.


Lipid bilayer Membrane physics Non-equilibrium fluctuations Active matter Fluctuation–dissipation Cytoskeleton 



H. Turlier acknowledges support from the CNRS/Inserm program ATIP-Avenir, from the Bettencourt-Schueller Foundation, and from the Collège de France. T. Betz is supported by the Deutsche Forschungsgemeinschaft (DFG), Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany.


  1. 1.
    Campelo F, Arnarez C, Marrink SJ, Kozlov MM (2014) Helfrich model of membrane bending: from Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv Colloid Interface Sci 208:25–33PubMedCrossRefGoogle Scholar
  2. 2.
    Hochmuth RM, Evans CA, Wiles HC, McCown JT (1983) Mechanical measurement of red cell membrane thickness. Science 220:101–102PubMedCrossRefGoogle Scholar
  3. 3.
    Browicz T (1890) Further observation of motion phenomena on red blood cells in pathological states. Zbl med Wissen 28:625–627Google Scholar
  4. 4.
    Tuvia S, Almagor A, Bitler A, Levin S, Korenstein R, Yedgar S (1997) Cell membrane fluctuations are regulated by medium macroviscosity: evidence for a metabolic driving force. Proc Natl Acad Sci U S A 94:5045–5049PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Park Y et al (2010) Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci U S A 107:1289–1294PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Betz T, Lenz M, Joanny JF, Sykes C (2009) ATP-dependent mechanics of red blood cells. Proc Natl Acad Sci U S A 106:15320–15325PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Turlier H et al (2016) Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nat Phys 12:513–519CrossRefGoogle Scholar
  8. 8.
    Cabot RC (1901) A guide to the clinical examination of the blood, 4th edn. Longmans, Green & Co., London, p 52Google Scholar
  9. 9.
    Pulvertaft RJV (1949) Vibratory movement in the cytoplasm of erythrocytes. J Clin Path 2:281–283PubMedCrossRefGoogle Scholar
  10. 10.
    Blowers R, Clarkson EM, Maizels M (1951) Flicker phenomenon in human erythrocytes. J Physiol 113:228PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Parpart AK, Hoffman JH (1956) Flicker in erythrocytes. “vibratory movements in the cytoplasm”?. J Cell Comp Physiol 47:295–303PubMedCrossRefGoogle Scholar
  12. 12.
    Brochard F, Lennon JF (1975) Frequency spectrum of the flicker phenomenon in erythrocytes. J Phys (Paris) 36:1035–1047CrossRefGoogle Scholar
  13. 13.
    Evans J, Gratzer W, Mohandas N, Parker K, Sleep J (2008) Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. Biophys J 94: 4134–4144PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Rodríguez-García R, López-Montero I, Mell M, Egea G, Gov NS, Monroy F (2015) Direct cytoskeleton forces cause membrane softening in red blood cells. Biophys J 108:2794–2806PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Prost J, Bruinsma R (1996) Shape fluctuations of active membranes. Europhys Lett 33:321–326CrossRefGoogle Scholar
  16. 16.
    Ramaswamy S, Toner J, Prost J (2000) Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys Rev Lett 84:3494–3497PubMedCrossRefGoogle Scholar
  17. 17.
    Lin LCL, Gov N, Brown FL (2006) Nonequilibrium membrane fluctuations driven by active proteins. J Chem Phys 124:074903CrossRefGoogle Scholar
  18. 18.
    Manneville JB, Bassereau P, Lévy D, Prost J (1999) Activity of transmembrane proteins induces magnification of shape fluctuations of lipid membranes. Phys Rev Lett 82:4356–4359CrossRefGoogle Scholar
  19. 19.
    Manneville JB, Bassereau P, Ramaswamy S, Prost J (2001) Active membrane fluctuations studied by micropipette aspiration. Phys Rev E 64:021908CrossRefGoogle Scholar
  20. 20.
    Faris MEA, Lacoste D, Pécréaux J, Joanny JF, Prost J, Bassereau P (2009) Membrane tension lowering induced by protein activity. Phys Rev Lett 102:038102CrossRefGoogle Scholar
  21. 21.
    Girard P, Prost J, Bassereau P (2005) Passive or active fluctuations in membranes containing proteins. Phys Rev Lett 94:088102PubMedCrossRefGoogle Scholar
  22. 22.
    Hankins HM, Baldridge RD, Xu P, Graham TR (2015) Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16:35–47PubMedCrossRefGoogle Scholar
  23. 23.
    Rao M, Sarasij RC (2001) Active fusion and fission processes on a fluid membrane. Phys Rev Lett 87:128101PubMedCrossRefGoogle Scholar
  24. 24.
    Humphrey D, Duggan C, Saha D, Smith D, Käs J (2002) Active fluidization of polymer networks through molecular motors. Nature 416(6879):413–416PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA (2009) An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci USA 106:15192–15197PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wickstrand C, Dods R, Royant A, Neutze R (2015) Bacteriorhodopsin: would the real structural intermediates please stand up?. Biochim Biophys Acta Gen Subj 1850:536–553CrossRefGoogle Scholar
  27. 27.
    Park Y et al (2006) Diffraction phase and fluorescence microscopy. Opt Express 14:8263–8268PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Monzel C et al (2015) Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy. Nat Commun 6:8162PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Zilker A, Ziegler M, Sackmann E (1992) Spectral analysis of erythrocyte flickering in the 0.3–4μm −1 regime by microinterferometry combined with fast image processing. Phys Rev A 46:7998CrossRefGoogle Scholar
  30. 30.
    Strey H, Peterson M, Sackmann E (1995) Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophys J 69:478PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Pécréaux J, Döbereiner HG, Prost J, Joanny JF, Bassereau P (2004) Refined contour analysis of giant unilamellar vesicles. Eur Phys J E 13:277–290PubMedCrossRefGoogle Scholar
  32. 32.
    Brown AT, Kotar J, Cicuta P (2011) Active rheology of phospholipid vesicles. Phys Rev E 84:021930CrossRefGoogle Scholar
  33. 33.
    Rädler J, Sackmann E (1993) Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. J Phys II 3:727–748Google Scholar
  34. 34.
    Monzel C, Sengupta K (2016) Measuring shape fluctuations in biological membranes. J Phys D Appl Phys 49:24CrossRefGoogle Scholar
  35. 35.
    Schmidt D, Monzel C, Bihr T, Merkel R, Seifert U, Sengupta K, Smith AS (2014) Signature of a nonharmonic potential as revealed from a consistent shape and fluctuation analysis of an adherent membrane. Phys Rev X 4:021023Google Scholar
  36. 36.
    Betz T, Sykes C (2012) Time resolved membrane fluctuation spectroscopy. Soft Matter 8: 5317–5326CrossRefGoogle Scholar
  37. 37.
    Peukes J, Betz T (2014) Direct measurement of the cortical tension during the growth of membrane blebs. Biophys J 107:1810–1820PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Henon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76:1145–1151PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mills JP, Qie L, Dao M, Lim CT, Suresh S (2004) Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mol Cell Biomech Tech Science Press 1:169–180Google Scholar
  40. 40.
    Yoon YZ, Kotar J, Brown AT, Cicuta P (2011) Red blood cell dynamics: from spontaneous fluctuations to non-linear response. Soft Matter 7:2042–2051CrossRefGoogle Scholar
  41. 41.
    Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28:693–703PubMedCrossRefGoogle Scholar
  42. 42.
    Helfrich WS, Servuss RM (1984) Undulations, steric interaction and cohesion of fluid membranes. Il Nuovo Cimento D 3:137–151CrossRefGoogle Scholar
  43. 43.
    Fournier JB, Ajdari A, Peliti L (2001) Effective-area elasticity and tension of micromanipulated membranes. Phys Rev Lett 86:4970PubMedCrossRefGoogle Scholar
  44. 44.
    Doi M, Edwards SF (1988) The theory of polymer dynamics. Oxford Science Publications, New York, pp 88–89Google Scholar
  45. 45.
    Schlosser F, Rehfeldt F, Schmidt C-F (2015) Force fluctuations in three-dimensional suspended fibroblasts. Philos Trans R Soc B 370:20140028CrossRefGoogle Scholar
  46. 46.
    Almonacid M et al (2015) Active diffusion positions the nucleus in mouse oocytes. Nat Cell Biol 17:470–479PubMedCrossRefGoogle Scholar
  47. 47.
    Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–373PubMedCrossRefGoogle Scholar
  48. 48.
    Lacoste D, Bassereau P (2014) An update on active membranes. In: Liposomes, lipid bilayers and model membranes. CRC Press, Boca Raton, pp 1–18Google Scholar
  49. 49.
    Milner ST, Safran SA (1987) Dynamical fluctuations of droplet microemulsions and vesicles. Phys Rev A 36:4371CrossRefGoogle Scholar
  50. 50.
    Lomholt MA (2006) Fluctuation spectrum of quasispherical membranes with force-dipole activity. Phys Rev E 73:061914CrossRefGoogle Scholar
  51. 51.
    Loubet B, Seifert U, Lomholt MA (2012) Effective tension and fluctuations in active membranes. Phys Rev E 85:031913CrossRefGoogle Scholar
  52. 52.
    Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10:344–352PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Chen HY (2004) Internal states of active inclusions and the dynamics of an active membrane. Phys Rev Lett 92:168101PubMedCrossRefGoogle Scholar
  54. 54.
    Chen H-Y, Mikhailov AS (2010) Dynamics of biomembranes with active multiple-state inclusions. Phys Rev E 81:031901–031911CrossRefGoogle Scholar
  55. 55.
    Gov NS (2004) Membrane undulations driven by force fluctuations of active proteins. Phys Rev Lett 93:268104–268104PubMedCrossRefGoogle Scholar
  56. 56.
    Gov NS, Safran SA (2005) Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys J 88:1859–1874PubMedCrossRefGoogle Scholar
  57. 57.
    Gov NS, Gopinathan A (2006) Dynamics of membranes driven by actin polymerization. Biophys J 90:454–469PubMedCrossRefGoogle Scholar
  58. 58.
    Gov NS (2007) Active elastic network: cytoskeleton of the red blood cell. Phys Rev E 75:011921CrossRefGoogle Scholar
  59. 59.
    Lacoste D, Lau AWC (2005) Dynamics of active membranes with internal noise. Europhys Lett 70:418–424CrossRefGoogle Scholar
  60. 60.
    Sankararaman S, Menon GI, Sunil Kumar PB (2002) Two-component fluid membranes near repulsive walls: linearized hydrodynamics of equilibrium and nonequilibrium states. Phys Rev E 66:031914–031916CrossRefGoogle Scholar
  61. 61.
    Gardiner CW (1985) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer, Berlin, p 77CrossRefGoogle Scholar
  62. 62.
    Seifert U (1995) The concept of effective tension for fluctuating vesicles. Z Phys B 97:299–309CrossRefGoogle Scholar
  63. 63.
    Gov N, Zilman A, Safran S (2003) Cytoskeleton confinement and tension of red blood cell membranes. Phys Rev Lett 90:228101PubMedCrossRefGoogle Scholar
  64. 64.
    Zilker A, Engelhardt H, Sackmann E (1987) Dynamic reflection interference contrast (RIC) microscopy: a new method to study surface excitations of cells and to measure membrane bending elastic moduli. J Phys (Paris) 48:2139–2151CrossRefGoogle Scholar
  65. 65.
    Rädler JO, Feder TJ, Strey HH, Sackmann E (1995) Fluctuation analysis of tension-controlled undulation forces between giant vesicles and solid substrates. Phys Rev E 51:4526CrossRefGoogle Scholar
  66. 66.
    Sackmann E, Smith AS (2014) Physics of cell adhesion: some lessons from cell-mimetic systems. Soft Matter 10:1644–1659PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Fournier J-B, Lacoste D, Raphaël E (2004) Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size. Phys Rev Lett 92:018102–018104PubMedCrossRefGoogle Scholar
  68. 68.
    Dubus C, Fournier JB (2007) A Gaussian model for the membrane of red blood cells with cytoskeletal defects. Europhys Lett 75:181–187CrossRefGoogle Scholar
  69. 69.
    Auth T, Safran SA, Gov NS (2007) Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation. New J Phys 9:430–430CrossRefGoogle Scholar
  70. 70.
    Auth T, Safran SA, Gov NS (2007) Fluctuations of coupled fluid and solid membranes with application to red blood cells. Phys Rev E 76:051910–051918CrossRefGoogle Scholar
  71. 71.
    Lin L, Brown F (2004) Dynamics of pinned membranes with application to protein diffusion on the surface of red blood cells. Biophys J 86:764–780PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Evans EA, Parsegian VA (1986) Thermal-mechanical fluctuations enhance repulsion between bimolecular layers. Proc Natl Acad Sci U S A 83:7132–7136PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Prost J, Manneville JB, Bruinsma R (1998) Fluctuation-magnification of non-equilibrium membranes near a wall. Eur Phys J B 1:465–480CrossRefGoogle Scholar
  74. 74.
    Bell GI (1988) Physical basis of cell-cell adhesion. CRC Press, Boca Raton, p 227Google Scholar
  75. 75.
    Evans E (1985) Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges. Biophys J 48:175–183PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Bihr T, Seifert U, Smith AS (2012) Nucleation of ligand-receptor domains in membrane adhesion. Phys Rev Lett 109:258101PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bruinsma R, Behrisch A, Sackmann E (2000) Adhesive switching of membranes: experiment and theory. Phys Rev E 61:4253–4267CrossRefGoogle Scholar
  78. 78.
    Weikl TR, Asfaw M, Krobath H, Rózycki B, Lipowsky R (2009) Adhesion of membranes via receptor–ligand complexes: domain formation, binding cooperativity, and active processes. Soft Matter 5:3213–3224CrossRefGoogle Scholar
  79. 79.
    Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11:276–287PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Charras GT (2008) A short history of blebbing. J Microsc 231:466–478PubMedCrossRefGoogle Scholar
  81. 81.
    Alert R, Casademunt J (2016) Bleb nucleation through membrane peeling. Phys Rev Lett 116:068101PubMedCrossRefGoogle Scholar
  82. 82.
    Fedosov DA, Caswell B, Karniadakis GE (2010) A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys J 98:2215–2225PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Interdisciplinary Research in Biology, Collège de FrancePSL Research University, CNRS UMR7241, Inserm U1050ParisFrance
  2. 2.Institute of Cell BiologyCenter for Molecular Biology of InflammationMuensterGermany

Personalised recommendations