Protein-Induced Morphological Deformations of Biomembranes

  • P. B. Sunil Kumar
  • Mohamed LaradjiEmail author


Many of the functions in living cells, such as endocytosis, cytokinesis, cell motility, and apoptosis, are mediated by the ability of the plasma membrane or organelles’ membranes to deform. While it is well established experimentally that the highly curved deformations of lipid membranes in cells are the result of their interactions with proteins, the understanding of the mechanisms leading to these structures is still in its infancy. Conventional modeling of membranes using sheet elasticity cannot explain the stability and dynamics of many of the complex membrane structures in the cell. In this chapter, we present two studies based on two different numerical approaches, which show how complex structures in cell membranes can emerge from the interplay between membrane elasticity and protein–membrane interactions. The first study is focused on the effect of energy-consuming protein binding/unbinding onto membrane morphology, and the second study is focused on the effect of cytoskeletal proteins on regulating membrane shapes.


Lipids Proteins Cytoskeleton Membrane morphogenesis Blebbing Simulation 



ML acknowledges financial support from NSF (DMR-0812470), NSF (DMR 0755447), and the Research Corporation (CC66879). PBSK acknowledges financial support from CSIR-India. The authors would like to thank N. Ramakrishnan, John Ipsen, Madan Rao, Eric Spangler, Cameron Harvey, and Joel Revalee for their contributions to the studies presented in this chapter.


  1. 1.
    Shibata Y, Hu J, Kozlov MM, Rapoport TA (2009) Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25:329–354CrossRefGoogle Scholar
  2. 2.
    Marshall WF (2011) Origins of cellular biology. BMC Biol 9:57CrossRefGoogle Scholar
  3. 3.
    Martínez-Menárguez JA (2013) Intra-Golgi transport: roles for vesicles, tubules and cisternae. ISRN Cell Biol 2013:1–15CrossRefGoogle Scholar
  4. 4.
    Alberts B, Johnson A, Lewis J, Raff M (2007) Molecular biology of the cell, 5th edn. Garland Science, New YorkCrossRefGoogle Scholar
  5. 5.
    Frost A, Unger VM, De Camilli P (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–196CrossRefGoogle Scholar
  6. 6.
    D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358CrossRefGoogle Scholar
  7. 7.
    Marks B, Stowell MHB, Vallis Y, Mills IG, Gibson A, Hopkins CR, McMahon HT (2001) GTPase activity of dynamin and resulting conformation change are essential to endocytosis. Nature 410:231–235CrossRefGoogle Scholar
  8. 8.
    Baschieri F, Farhan H (2012) Crosstalk of small GTPases at the Golgi apparatus. Small GTPases 3:80–90CrossRefGoogle Scholar
  9. 9.
    Harris KP, Littleton JT (2011) Vesicle trafficking: a Rab family profile. Curr Biol 21:R841–843CrossRefGoogle Scholar
  10. 10.
    Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19CrossRefGoogle Scholar
  11. 11.
    Chavrier P, Goud B (1999) The role of ARF and Rab GTPases in membrane transport. Curr. Opin. Cell Biol. 11:466–475CrossRefGoogle Scholar
  12. 12.
    Turner M, Sens P, Socci N (2005) Nonequilibrium raftlike membrane domains under continuous recycling. Phys Rev Lett 95:168301CrossRefGoogle Scholar
  13. 13.
    Wieland FT, Gleason ML, Serafini TA, Rothman JE (1987) The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50:289–300CrossRefGoogle Scholar
  14. 14.
    Wirtz D (2009) Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys 38:301–326CrossRefGoogle Scholar
  15. 15.
    Ramakrishnan N, Rao M, Ipsen J, Sunil Kumar PB (2015) Organelle morphogenesis by active membrane remodeling. Soft Matter 11:2387CrossRefGoogle Scholar
  16. 16.
    Sunil Kumar PB, Gompper G, Lipowsky R (2001) Budding dynamics of multicomponent membranes. Phys Rev Lett 86:3911–3914CrossRefGoogle Scholar
  17. 17.
    Gompper G, Kroll D (1994) Phase diagram of fluid vesicles. Phys Rev Lett 73:2139–2142CrossRefGoogle Scholar
  18. 18.
    Noguchi H, Gompper G (2005) Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc Natl Acad Sci U S A 102:14159–14164CrossRefGoogle Scholar
  19. 19.
    Ramakrishnan N, Sunil Kumar PB, Ipsen JH (2010) Monte Carlo simulations of fluid vesicles with in-plane orientational ordering. Phys Rev E 81:041922CrossRefGoogle Scholar
  20. 20.
    Ramakrishnan N, Sunil Kumar PB, Ipsen JH (2013) Membrane-mediated aggregation of curvature-inducing nematogens and membrane tubulation. Biophys J 104:1018–1028CrossRefGoogle Scholar
  21. 21.
    Paluch E, Sykes C, Prost J, Bronens M (2006) Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol 16:5–10CrossRefGoogle Scholar
  22. 22.
    Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140:627–636CrossRefGoogle Scholar
  23. 23.
    Burton K, Taylor DL (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature (London) 385:450–454CrossRefGoogle Scholar
  24. 24.
    Föller M, Huber SM, Lang F (2008) Erythrocyte programmed death. IUBMB Life 60:661–668CrossRefGoogle Scholar
  25. 25.
    Barros LF, Kanaseki T, Sabirov R, Morishima S, Castrom J, Bittner CX, Maeno E, Anod-Akatsuka Y, Okada Y (2003) Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death Differ 10:687–697CrossRefGoogle Scholar
  26. 26.
    Mercer J, Helenius A (2009) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535CrossRefGoogle Scholar
  27. 27.
    Charras G, Palluch E (2008) Blebs lead the way: how to migrate without lamellipodia? Nat Rev Mol Cell Biol 9:730–736CrossRefGoogle Scholar
  28. 28.
    Paluch EK, Raz E (2013) The role and regulation of blebs in cell migration. Curr Opin Cell Biol 25:582–590CrossRefGoogle Scholar
  29. 29.
    Paluch E, Piel M, Prost J, Bornens M, Sykes C (2005) Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys J 89:724–733CrossRefGoogle Scholar
  30. 30.
    Tinivez J-Y, Shulze U, Salbreux G, Roensch J, Joanny J-F, Paluch E (2009) Role of cortical tension in bleb growth. Proc Natl Acad Sci U S A 106:18581–18586CrossRefGoogle Scholar
  31. 31.
    Charras GT, Coughlin M, Michison TJ, Mahadevan L (2008) Life and times of a cellular bleb. Biophys J 94:1836–1853CrossRefGoogle Scholar
  32. 32.
    Sheetz MP, Sable JE, Döbereiner H-G (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434CrossRefGoogle Scholar
  33. 33.
    Merkel R, Simson R, Simson DA, Hohenadl M, Boulbitch A, Wallraff E, Sackmann E (2000) A micormechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium. Biophys J 79:707–719CrossRefGoogle Scholar
  34. 34.
    Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490CrossRefGoogle Scholar
  35. 35.
    Sens P, Gov N (2007) Force balance and membrane shedding at the red-blood-cell surface. Phys Rev Lett 98:018102CrossRefGoogle Scholar
  36. 36.
    Young J, Mitran S (2010) A numerical study of cellular blebbing: a volume-conserving, fluid-structure interaction model of the entire cell. J Biomech 43:210–220CrossRefGoogle Scholar
  37. 37.
    Strychalski W, Guy RD (2013) A computational model of bleb formation. Math Med Biol 30:115–130CrossRefGoogle Scholar
  38. 38.
    Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E (2013) Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 15:751–762CrossRefGoogle Scholar
  39. 39.
    Woolley TE, Gaffney EA, Walters SL, Oliver JM, Baker RE, Goriely A (2014) Three mechanical models for blebbing and multi-blebbing. IMA J Appl Math 79:636–660CrossRefGoogle Scholar
  40. 40.
    Spangler EJ, Harvey CW, Revalee JD, Sunil Kumar PB, Laradji M (2011) Computer simulation of cytoskeleton-induced blebbing in lipid membranes. Phys Rev E 84:051906CrossRefGoogle Scholar
  41. 41.
    Revalee JD, Laradji M, Sunil Kumar PB (2008) Implicit-solvent mesoscale model based on soft-core potentials for self-assembled lipid membranes. J Chem Phys 128:035102CrossRefGoogle Scholar
  42. 42.
    Sikder MKU, Stone KA, Sunil Kumar PB, Laradji M (2014) Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes. J Chem Phys 141:054902CrossRefGoogle Scholar
  43. 43.
    Spangler EJ, Sunil Kumar PB, Laradji M (2012) Anomalous freezing behavior of nanoscale liposomes. Soft Matter 8:10896–10904CrossRefGoogle Scholar
  44. 44.
    Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison JT (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature (London) 435:365–369CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics, Indian Institute of Technology PalakkadPalakkadIndia
  2. 2.Department of Physics and Materials ScienceThe University of MemphisMemphisUSA

Personalised recommendations