Skip to main content

Common Energetic and Mechanical Features of Membrane Fusion and Fission Machineries

  • Chapter
  • First Online:

Abstract

Membrane fusion and fission reactions are two antagonistic processes involved in several important biological functions, including intracellular and intercellular communication, viral infection, and the maintenance of shape and function of the mitochondrial and endoplasmic reticulum networks. Both reactions imply transient membrane remodeling events requiring a high energy input to overcome the intrinsic stability of the membrane lipid bilayer structure. This energy is provided by specialized proteins that accompany membranes on their path to fusion/fission. In this chapter, we present the physical principles of membrane fusion and fission reactions, review the several mechanisms used by specific proteins to mediate membrane fusion and fission, and emphasize the common strategies employed by these proteins to manipulate lipid bilayers during fusion/fission events.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Söllner TH, Rothman JE (1996) Molecular machinery mediating vesicle budding, docking and fusion. Cell Struct Funct 21:407–412

    Article  PubMed  Google Scholar 

  2. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    Article  CAS  PubMed  Google Scholar 

  3. Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581:2150–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207

    Article  CAS  PubMed  Google Scholar 

  5. Kozlov MM, McMahon HT, Chernomordik LV (2010) Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci 35:699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–382

    Article  CAS  PubMed  Google Scholar 

  7. Düzgüneş N, Wilschut J, Fraley R, Papahadjopoulos D (1981) Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochim Biophys Acta 642:182–195

    Article  PubMed  Google Scholar 

  8. Nir S, Bentz J, Wilschut J, Duzgunes N (1983) Aggregation and fusion of phospholipid vesicles. Prog Surf Sci 13:1–124

    Article  CAS  Google Scholar 

  9. Helm CA, Israelachvili JN, McGuiggan PM (1989) Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246:919–922

    Article  CAS  PubMed  Google Scholar 

  10. Nir S, Wilschut J, Bentz J (1982) The rate of fusion of phospholipid vesicles and the role of bilayer curvature. Biochim Biophys Acta 688:275–278

    Article  CAS  PubMed  Google Scholar 

  11. Chen H et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davidson RL, Gerald PS (1976) Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol. Somatic Cell Genet 2:165–176

    Article  CAS  PubMed  Google Scholar 

  13. Schlegel R, McEvoy L (1987) Red cell-mediated microinjection. Methods Enzymol 149:293–300

    Article  CAS  PubMed  Google Scholar 

  14. Szoka F et al (1981) Use of lectins and polyethylene glycol for fusion of glycolipid-containing liposomes with eukaryotic cells. Proc Natl Acad Sci USA 78:1685–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lentz BR (1994) Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chem Phys Lipids 73:91–106

    Article  CAS  PubMed  Google Scholar 

  16. Lentz BR (2007) PEG as a tool to gain insight into membrane fusion. Eur Biophys J 36:315–326

    Article  CAS  PubMed  Google Scholar 

  17. Burgess SW, McIntosh TJ, Lentz BR (1992) Poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation. Biochemistry 31:2653–2661

    Article  CAS  PubMed  Google Scholar 

  18. Haque E, McIntosh TJ, Lentz BR (2001) Influence of lipid composition on physical properties and PEG-mediated fusion of curved and uncurved model membrane vesicles: “ nature’s own ” fusogenic. Biochemistry 40:4340–4348

    Article  CAS  PubMed  Google Scholar 

  19. Kuhl T et al (1996) Direct measurement of polyethylene glycol induced depletion attraction between lipid bilayers. Langmuir 12:3003–3014

    Article  CAS  Google Scholar 

  20. Evans E, Needham D (1988) Attraction between lipid bilayer membranes in concentrated solutions of nonadsorbing polymers: comparison of mean-field theory with measurements of adhesion energy. Macromolecules 21:1822–1831

    Article  CAS  Google Scholar 

  21. Boni LT, Stewart TP, Alderfer JL, Hui SW (1981) Lipid-polyethylene glycol interactions: II. Formation of defects in bilayers. J Membr Biol 62:71–77

    Article  CAS  PubMed  Google Scholar 

  22. Tilcock CPS, Fisher D (1979) Interaction of phospholipid membranes with poly(ethylene glycol)s. Biochim Biophys Acta 577:53–61

    Article  Google Scholar 

  23. Lentz BR, McIntyre GF, Parks DJ, Yates JC, Massenburg D (1992) Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles. Biochemistry 31:2643–2653

    Article  CAS  PubMed  Google Scholar 

  24. Talbot WA, Zheng LX, Lentz BR (1997) Acyl chain unsaturation and vesicle curvature alter outer leaflet packing and promote poly(ethylene glycol)-mediated membrane fusion. Biochemistry 36:5827–5836

    Article  CAS  PubMed  Google Scholar 

  25. Yang Q, Guo Y, Li L, Hui SW (1997) Effects of lipid headgroup and packing stress on poly(ethylene glycol)-induced phospholipid vesicle aggregation and fusion. Biophys J 73:277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marra J, Israelachvili J (1985) Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry 24:4608–4618

    Article  CAS  PubMed  Google Scholar 

  27. Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  PubMed  Google Scholar 

  28. Haque ME, Lentz BR (2004) Roles of curvature and hydrophobic interstice energy in fusion: studies of lipid perturbant effects. Biochemistry 43:3507–3517

    Article  CAS  PubMed  Google Scholar 

  29. Meers P, Ali S, Erukulla R, Janoff AS (2000) Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion. Biochim Biophys Acta 1467:227–243

    Article  CAS  PubMed  Google Scholar 

  30. Lee J, Lentz BR (1997) Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry 36:6251–6259

    Article  CAS  PubMed  Google Scholar 

  31. Chernomordik LV, Melikyan GB, Chizmadzhev YA (1987) Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim Biophys Acta Rev Biomembr 906:309–352

    Article  CAS  Google Scholar 

  32. Lei G, MacDonald RC (2003) Lipid bilayer vesicle fusion: intermediates captured by high-speed microfluorescence spectroscopy. Biophys J 85:1585–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heuvingh J, Pincet F, Cribier S (2004) Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance. Eur Phys J E Soft Matter 14:269–276

    Article  CAS  PubMed  Google Scholar 

  34. Chanturiya A, Chernomordik LV, Zimmerberg J (1997) Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc Natl Acad Sci USA 94:14423–14428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee J, Lentz BR (1998) Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proc Natl Acad Sci USA 95:9274–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chernomordik L, Chanturiya A, Green J, Zimmerberg J (1995) The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys J 69:922–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen FS, Zimmerberg J, Finkelstein A (1980) Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J Gen Physiol 75:251–270

    Article  CAS  PubMed  Google Scholar 

  38. Verkleij AJ, Mombers C, Gerritsen WJ, Leunissen-Bijvelt L, Cullis PR (1979) Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing. Biochim Biophys Acta 555:358–361

    Article  CAS  PubMed  Google Scholar 

  39. Siegel DP, Burns JL, Chestnut MH, Talmon Y (1989) Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy. Biophys J 56:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Siegel DP, Epand RM (1997) The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J 73:3089–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang L, Huang HW (2002) Observation of a membrane fusion intermediate structure. Science 297:1877–1879

    Article  CAS  PubMed  Google Scholar 

  42. Aeffner S, Reusch T, Weinhausen B, Salditt T (2012) Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc Natl Acad Sci USA 109:E1609–E1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knecht V, Marrink SJ (2007) Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophys J 92:4254–4261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Müller M, Katsov K, Schick M (2003) A new mechanism of model membrane fusion determined from Monte Carlo simulation. Biophys J 85:1611–1623

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jahn R, Grubmüller H (2002) Membrane fusion. Curr Opin Cell Biol 14:488–495

    Article  CAS  PubMed  Google Scholar 

  46. Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Efrat A, Chernomordik LV, Kozlov MM (2007) Point-like protrusion as a prestalk intermediate in membrane fusion pathway. Biophys J 92:L61–L63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kozlovsky Y, Kozlov MM (2002) Stalk model of membrane fusion: solution of energy crisis. Biophys J 82:882–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuzmin PI, Zimmerberg J, Chizmadzhev YA, Cohen FS (2001) A quantitative model for membrane fusion based on low-energy intermediates. Proc Natl Acad Sci USA 98:7235–7240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kozlovsky Y, Chernomordik LV, Kozlov MM (2002) Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys J 83:2634–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siegel DP (1993) Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J 65:2124–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Markin VS, Albanesi JP (2002) Membrane fusion: stalk model revisited. Biophys J 82:693–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jackson MB (2009) Minimum membrane bending energies of fusion pores. J Membr Biol 231:101–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marrink SJ, Mark AE (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc 125:11144–11145

    Article  CAS  PubMed  Google Scholar 

  55. Grafmüller A, Shillcock J, Lipowsky R (2009) The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. Biophys J 96:2658–2675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Noguchi H, Takasu M (2001) Fusion pathways of vesicles: a Brownian dynamics simulation. J Chem Phys 115:9547

    Article  CAS  Google Scholar 

  57. Lentz BR, Talbot W, Lee J, Zheng LX (1997) Transbilayer lipid redistribution accompanies poly(ethylene glycol) treatment of model membranes but is not induced by fusion. Biochemistry 36:2076–2083

    Article  CAS  PubMed  Google Scholar 

  58. Evans KO, Lentz BR (2002) Kinetics of lipid rearrangements during poly(ethylene glycol)-mediated fusion of highly curved unilamellar vesicles. Biochemistry 41:1241–1249

    Article  CAS  PubMed  Google Scholar 

  59. Chernomordik LV et al (1985) The shape of lipid molecules and monolayer membrane fusion. Biochim Biophys Acta Biomembr 812:643–655

    Article  CAS  Google Scholar 

  60. Kasson PM, Pande VS (2007) Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLoS Comput Biol 3:e220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lee JY, Schick M (2007) Field theoretic study of bilayer membrane fusion III: membranes with leaves of different composition. Biophys J 92:3938–3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hed G, Safran SA (2003) Initiation and dynamics of hemifusion in lipid bilayers. Biophys J 85:381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chizmadzhev YA, Kuzmin PI, Kumenko DA, Zimmerberg J, Cohen FS (2000) Dynamics of fusion pores connecting membranes of different tensions. Biophys J 78:2241–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kozlovsky Y, Kozlov MM (2003) Membrane fission: model for intermediate structures. Biophys J 85:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shlomovitz R, Gov NS (2009) Membrane-mediated interactions drive the condensation and coalescence of FtsZ rings. Phys Biol 6:046017

    Article  CAS  PubMed  Google Scholar 

  66. Morlot S et al (2012) Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151:619–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  68. Jülicher F, Lipowsky R (1996) Shape transformations of vesicles with intramembrane domains. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 53:2670–2683

    PubMed  Google Scholar 

  69. Jülicher F, Lipowsky R (1993) Domain-induced budding of vesicles. Phys Rev Lett 70:2964–2967

    Article  PubMed  Google Scholar 

  70. Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  CAS  PubMed  Google Scholar 

  71. Stachowiak JC, Hayden CC, Sasaki DY (2010) Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc Natl Acad Sci USA 107:7781–7786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sens P, Turner MS (2006) Budded membrane microdomains as tension regulators. Phys Rev E Stat Nonlinear Soft Matter Phys 73:031918

    Article  CAS  Google Scholar 

  73. Sens P (2004) Dynamics of nonequilibrium membrane bud formation. Phys Rev Lett 93:108103

    Article  PubMed  CAS  Google Scholar 

  74. Allain JM, Ben Amar M (2006) Budding and fission of a multiphase vesicle. Eur Phys J E Soft Matter 20:409–420

    Article  CAS  PubMed  Google Scholar 

  75. Allain JM, Storm C, Roux A, Ben Amar M, Joanny JF (2004) Fission of a multiphase membrane tube. Phys Rev Lett 93:158104

    Article  PubMed  CAS  Google Scholar 

  76. Roux A et al (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24:1537–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lenz M, Morlot S, Roux A (2009) Mechanical requirements for membrane fission: common facts from various examples. FEBS Lett 583:3839–3846

    Article  CAS  PubMed  Google Scholar 

  78. Leibler S (1986) Curvature instability in membranes. J Phys 47:507–516

    Article  CAS  Google Scholar 

  79. Tsafrir I, Caspi Y, Guedeau-Boudeville MA, Arzi T, Stavans J (2003) Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91:138102

    Article  PubMed  CAS  Google Scholar 

  80. Tsafrir I et al (2001) Pearling instabilities of membrane tubes with anchored polymers. Phys Rev Lett 86:1138–1141

    Article  CAS  PubMed  Google Scholar 

  81. Stachowiak JC et al (2012) Membrane bending by protein-protein crowding. Nat Cell Biol 14:944–949

    Article  CAS  PubMed  Google Scholar 

  82. Snead WT et al (2017) Membrane fission by protein crowding. Proc Natl Acad Sci USA 114:E3258–E3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kozlov MM et al (2014) Mechanisms shaping cell membranes. Curr Opin Cell Biol 29:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stachowiak JC, Brodsky FM, Miller EA (2013) A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat Cell Biol 15:1019–1027

    Article  CAS  PubMed  Google Scholar 

  85. Evans E, Yeung A (1994) Hidden dynamics in rapid changes of bilayer shape. Chem Phys Lipids 73:39–56

    Article  CAS  Google Scholar 

  86. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418

    Article  PubMed  Google Scholar 

  87. Nonet ML, Saifee O, Zhao H, Rand JB, Wei L (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Deitcher DL et al (1998) Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci 18:2028–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schoch S et al (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1117–1122

    Article  CAS  PubMed  Google Scholar 

  90. Washbourne P et al (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5:19–26

    Article  CAS  PubMed  Google Scholar 

  91. Schiavo G et al (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  CAS  PubMed  Google Scholar 

  92. Blasi J et al (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365:160–163

    Article  CAS  PubMed  Google Scholar 

  93. Blasi J et al (1993) Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 12:4821–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Weber T et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  PubMed  Google Scholar 

  95. Hu C et al (2003) Fusion of cells by flipped SNAREs. Science 300:1745–1749

    Article  CAS  PubMed  Google Scholar 

  96. Dietrich LE, Boeddinghaus C, LaGrassa TJ, Ungermann C (2003) Control of eukaryotic membrane fusion by N-terminal domains of SNARE proteins. Biochim Biophys Acta 1641:111–119

    Article  CAS  PubMed  Google Scholar 

  97. Daste F, Galli T, Tareste D (2015) Structure and function of longin SNAREs. J Cell Sci 128:4263–4272

    Article  CAS  PubMed  Google Scholar 

  98. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353

    Article  CAS  PubMed  Google Scholar 

  99. Melia TJ et al (2002) Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J Cell Biol 158:929–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sørensen JB et al (2006) Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25:955–966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fasshauer D, Antonin W, Subramaniam V, Jahn R (2002) SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat Struct Biol 9:144–151

    Article  CAS  PubMed  Google Scholar 

  103. Hayashi T et al (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13:5051–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. May AP, Whiteheart SW, Weis WI (2001) Unraveling the mechanism of the vesicle transport ATPase NSF, the N-ethylmaleimide-sensitive factor. J Biol Chem 276:21991–21994

    Article  CAS  PubMed  Google Scholar 

  105. Li F et al (2007) Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896

    Article  CAS  PubMed  Google Scholar 

  106. Liu W, Montana V, Parpura V, Mohideen U (2009) Single Molecule Measurements of Interaction Free Energies Between the Proteins Within Binary and Ternary SNARE Complexes. J Nanoneurosci 1:120–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Min D et al (2013) Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat Commun 4:1705

    Article  PubMed  CAS  Google Scholar 

  108. Gao Y et al (2012) Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cohen FS, Melikyan GB (2004) The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol 199:1–14

    Article  CAS  PubMed  Google Scholar 

  110. Ryham RJ, Klotz TS, Yao L, Cohen FS (2016) Calculating transition energy barriers and characterizing activation states for steps of fusion. Biophys J 110:1110–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Van den Bogaart G et al (2010) One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol 17:358–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Hua Y, Scheller RH (2001) Three SNARE complexes cooperate to mediate membrane fusion. Proc Natl Acad Sci USA 98:8065–8070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–292

    Article  CAS  PubMed  Google Scholar 

  114. Mohrmann R, de Wit H, Verhage M, Neher E, Sørensen JB (2010) Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330:502–505

    Article  CAS  PubMed  Google Scholar 

  115. Sinha R, Ahmed S, Jahn R, Klingauf J (2011) Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. Proc Natl Acad Sci USA 108:14318–14323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shi L et al (2012) SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lu X, Zhang F, McNew JA, Shin YK (2005) Membrane fusion induced by neuronal SNAREs transits through hemifusion. J Biol Chem 280:30538–30541

    Article  CAS  PubMed  Google Scholar 

  118. Yoon TY, Okumus B, Zhang F, Shin YK, Ha T (2006) Multiple intermediates in SNARE-induced membrane fusion. Proc Natl Acad Sci USA 103:19731–19736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu T, Wang T, Chapman ER, Weisshaar JC (2008) Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophys J 94:1303–1314

    Article  CAS  PubMed  Google Scholar 

  120. Zampighi GA et al (2006) Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. Biophys J 91:2910–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wong JL, Koppel DE, Cowan AE, Wessel GM (2007) Membrane hemifusion is a stable intermediate of exocytosis. Dev Cell 12:653–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Risselada HJ, Kutzner C, Grubmüller H (2011) Caught in the act: visualization of SNARE-mediated fusion events in molecular detail. Chembiochem 12:1049–1055

    Article  CAS  PubMed  Google Scholar 

  123. Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15:690–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Podbilewicz B (2014) Virus and cell fusion mechanisms. Annu Rev Cell Dev Biol 30:111–139

    Article  CAS  PubMed  Google Scholar 

  125. Tamm LK, Crane J, Kiessling V (2003) Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr Opin Struct Biol 13:453–466

    Article  CAS  PubMed  Google Scholar 

  126. Hamilton BS, Whittaker GR, Daniel S (2012) Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4:1144–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Han X, Bushweller JH, Cafiso DS, Tamm LK (2001) Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 8:715–720

    Article  CAS  PubMed  Google Scholar 

  128. Lorieau JL, Louis JM, Bax A (2010) The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface. Proc Natl Acad Sci USA 107:11341–11346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kanaseki T, Kawasaki K, Murata M, Ikeuchi Y, Ohnishi S (1997) Structural features of membrane fusion between influenza virus and liposome as revealed by quick-freezing electron microscopy. J Cell Biol 137:1041–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Frolov VA, Cho MS, Bronk P, Reese TS, Zimmerberg J (2000) Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic 1:622–630

    Article  CAS  PubMed  Google Scholar 

  131. Jelesarov I, Lu M (2001) Thermodynamics of trimer-of-hairpins formation by the SIV gp41 envelope protein. J Mol Biol 307:637–656

    Article  CAS  PubMed  Google Scholar 

  132. Li Y, Han X, Tamm LK (2003) Thermodynamics of fusion peptide-membrane interactions. Biochemistry 42:7245–7251

    Article  CAS  PubMed  Google Scholar 

  133. Kemble GW, Danieli T, White JM (1994) Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76:383–391

    Article  CAS  PubMed  Google Scholar 

  134. Melikyan GB, White JM, Cohen FS (1995) GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol 131:679–691

    Article  CAS  PubMed  Google Scholar 

  135. Armstrong RT, Kushnir AS, White JM (2000) The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J Cell Biol 151:425–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gutman O, Danieli T, White JM, Henis YI (1993) Effects of exposure to low pH on the lateral mobility of influenza hemagglutinin expressed at the cell surface: correlation between mobility inhibition and inactivation. Biochemistry 32:101–106

    Article  CAS  PubMed  Google Scholar 

  137. Floyd DL, Ragains JR, Skehel JJ, Harrison SC, van Oijen AM (2008) Single-particle kinetics of influenza virus membrane fusion. Proc Natl Acad Sci USA 105:15382–15387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ivanovic T, Choi JL, Whelan SP, van Oijen AM, Harrison SC (2013) Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. eLife 2:e00333

    Google Scholar 

  139. Chernomordik LV, Frolov VA, Leikina E, Bronk P, Zimmerberg J (1998) The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol 140:1369–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kozlov MM, Chernomordik LV (2002) The protein coat in membrane fusion: lessons from fission. Traffic 3:256–267

    Article  PubMed  Google Scholar 

  141. McNew JA, Sondermann H, Lee T, Stern M, Brandizzi F (2013) GTP-dependent membrane fusion. Annu Rev Cell Dev Biol 29:529–550

    Article  CAS  PubMed  Google Scholar 

  142. Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556

    Article  CAS  PubMed  Google Scholar 

  143. Hu J, Prinz WA, Rapoport TA (2011) Weaving the web of ER tubules. Cell 147:1226–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bian X et al (2011) Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc Natl Acad Sci USA 108:3976–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Byrnes LJ, Sondermann H (2011) Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc Natl Acad Sci USA 108:2216–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Byrnes LJ et al (2013) Structural basis for conformational switching and GTP loading of the large G protein atlastin. EMBO J 32:369–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Orso G et al (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460:978–983

    Article  CAS  PubMed  Google Scholar 

  148. Moss TJ, Andreazza C, Verma A, Daga A, McNew JA (2011) Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain. Proc Natl Acad Sci USA 108:11133–11138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu TY et al (2012) Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc Natl Acad Sci USA 109:E2146–E2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu TY et al (2015) Cis and trans interactions between atlastin molecules during membrane fusion. Proc Natl Acad Sci USA 112:E1851–E1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Faust JE et al (2015) The Atlastin C-terminal tail is an amphipathic helix that perturbs the bilayer structure during endoplasmic reticulum homotypic fusion. J Biol Chem 290:4772–4783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zick M et al (2009) Distinct roles of the two isoforms of the dynamin-like GTPase Mgm1 in mitochondrial fusion. FEBS Lett 583:2237–2243

    Article  CAS  PubMed  Google Scholar 

  153. DeVay RM et al (2009) Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol 186:793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ban T, Heymann JA, Song Z, Hinshaw JE, Chan DC (2010) OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum Mol Genet 19:2113–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Koshiba T et al (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–862

    Article  CAS  PubMed  Google Scholar 

  156. Daste F et al (2018) The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep 19:e43637

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  157. Meeusen S, McCaffery JM, Nunnari J (2004) Mitochondrial fusion intermediates revealed in vitro. Science 305:1747–1752

    Article  CAS  PubMed  Google Scholar 

  158. Brandt T, Cavellini L, Kühlbrandt W, Cohen MM (2016) A mitofusin-dependent docking ring complex triggers mitochondrial fusion in vitro. eLife 5:e14618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Qi Y et al (2016) Structures of human mitofusin 1 provide insight into mitochondrial tethering. J Cell Biol 215:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cao YL et al (2017) MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 542:372–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Aguilar PS et al (2013) Genetic basis of cell-cell fusion mechanisms. Trends Genet 29:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mohler WA et al (2002) The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev Cell 2:355–362

    Article  CAS  PubMed  Google Scholar 

  163. Shemer G et al (2004) EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Curr Biol 14:1587–1591

    Article  CAS  PubMed  Google Scholar 

  164. Podbilewicz B et al (2006) The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev Cell 11:471–481

    Article  CAS  PubMed  Google Scholar 

  165. Pérez-Vargas J et al (2014) Structural basis of eukaryotic cell-cell fusion. Cell 157:407–419

    Article  PubMed  CAS  Google Scholar 

  166. Shilagardi K et al (2013) Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science 340:359–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Morlot S, Roux A (2013) Mechanics of dynamin-mediated membrane fission. Annu Rev Biophys 42:629–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Van Engelenburg SB et al (2014) Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343:653–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:421–432

    Article  CAS  PubMed  Google Scholar 

  170. Chen MS et al (1991) Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351:583–586

    Article  CAS  PubMed  Google Scholar 

  171. Koenig JH, Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9:3844–3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127:915–934

    Article  CAS  PubMed  Google Scholar 

  173. Damke H, Baba T, van der Bliek AM, Schmid SL (1995) Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 131:69–80

    Article  CAS  PubMed  Google Scholar 

  174. Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374:190–192

    Article  CAS  PubMed  Google Scholar 

  175. Takei K, McPherson PS, Schmid SL, De Camilli P (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374:186–190

    Article  CAS  PubMed  Google Scholar 

  176. Antonny B et al (2016) Membrane fission by dynamin: what we know and what we need to know. EMBO J 35:2270–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sweitzer SM, Hinshaw JE (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93:1021–1029

    Article  CAS  PubMed  Google Scholar 

  178. Danino D, Moon KH, Hinshaw JE (2004) Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J Struct Biol 147:259–267

    Article  CAS  PubMed  Google Scholar 

  179. Zhang P, Hinshaw JE (2001) Three-dimensional reconstruction of dynamin in the constricted state. Nat Cell Biol 3:922–926

    Article  CAS  PubMed  Google Scholar 

  180. Chen YJ, Zhang P, Egelman EH, Hinshaw JE (2004) The stalk region of dynamin drives the constriction of dynamin tubes. Nat Struct Mol Biol 11:574–575

    Article  CAS  PubMed  Google Scholar 

  181. Sundborger AC et al (2014) A dynamin mutant defines a superconstricted prefission state. Cell Rep 8:734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ford MG, Jenni S, Nunnari J (2011) The crystal structure of dynamin. Nature 477:561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Faelber K et al (2011) Crystal structure of nucleotide-free dynamin. Nature 477:556–560

    Article  CAS  PubMed  Google Scholar 

  184. Reubold TF et al (2015) Crystal structure of the dynamin tetramer. Nature 525:404–408

    Article  CAS  PubMed  Google Scholar 

  185. Chappie JS et al (2009) An intramolecular signaling element that modulates dynamin function in vitro and in vivo. Mol Biol Cell 20:3561–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chappie JS, Acharya S, Leonard M, Schmid SL, Dyda F (2010) G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465:435–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mears JA, Ray P, Hinshaw JE (2007) A corkscrew model for dynamin constriction. Structure 15:1190–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chappie JS et al (2011) A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147:209–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mattila JP et al (2015) A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Roux A, Uyhazi K, Frost A, De Camilli P (2006) GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441:528–531

    Article  CAS  PubMed  Google Scholar 

  191. Morlot S, Lenz M, Prost J, Joanny JF, Roux A (2010) Deformation of dynamin helices damped by membrane friction. Biophys J 99:3580–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lenz M, Prost J, Joanny JF (2008) Mechanochemical action of the dynamin protein. Phys Rev E Stat Nonlinear Soft Matter Phys 78:011911

    Article  CAS  Google Scholar 

  193. Perrais D, Merrifield CJ (2005) Dynamics of endocytic vesicle creation. Dev Cell 9:581–592

    Article  CAS  PubMed  Google Scholar 

  194. Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282

    Article  CAS  PubMed  Google Scholar 

  195. Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. McCullough J, Colf LA, Sundquist WI (2013) Membrane fission reactions of the mammalian ESCRT pathway. Annu Rev Biochem 82:663–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912

    Article  CAS  PubMed  Google Scholar 

  199. Garrus JE et al (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65

    Article  CAS  PubMed  Google Scholar 

  200. Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG (2015) ESCRT-III controls nuclear envelope reformation. Nature 522:236–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Vietri M et al (2015) Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522:231–235

    Article  CAS  PubMed  Google Scholar 

  202. Bruns C, McCaffery JM, Curwin AJ, Duran JM, Malhotra V (2011) Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J Cell Biol 195:979–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Spitzer C et al (2015) The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell 27:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gao C et al (2015) Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc Natl Acad Sci USA 112:1886–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hurley JH (2015) ESCRTs are everywhere. EMBO J 34:2398–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Teis D, Saksena S, Emr SD (2008) Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 15:578–589

    Article  CAS  PubMed  Google Scholar 

  207. Hurley JH (2010) The ESCRT complexes. Crit Rev Biochem Mol Biol 45:463–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Mierzwa B, Gerlich DW (2014) Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 31:525–538

    Article  CAS  PubMed  Google Scholar 

  209. Elia N, Fabrikant G, Kozlov MM, Lippincott-Schwartz J (2012) Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling. Biophys J 102:2309–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Saksena S, Wahlman J, Teis D, Johnson AE, Emr SD (2009) Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136:97–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Obita T et al (2007) Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449:735–739

    Article  CAS  PubMed  Google Scholar 

  212. Adell MA et al (2014) Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J Cell Biol 205:33–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yang B, Stjepanovic G, Shen Q, Martin A, Hurley JH (2015) Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat Struct Mol Biol 22:492–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Mierzwa BE et al (2017) Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat Cell Biol 19:787–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Campsteijn C, Vietri M, Stenmark H (2016) Novel ESCRT functions in cell biology: spiraling out of control? Curr Opin Cell Biol 41:1–8

    Article  CAS  PubMed  Google Scholar 

  216. Yang D et al (2008) Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat Struct Mol Biol 15:1278–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Pires R et al (2009) A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17:843–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Bissig C et al (2013) Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. Dev Cell 25:364–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Bissig C, Gruenberg J (2014) ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 24:19–25

    Article  CAS  PubMed  Google Scholar 

  220. Christ L et al (2016) ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J Cell Biol 212:499–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Prescher J et al (2015) Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLoS Pathog 11:e1004677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Carlson LA, Hurley JH (2012) In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc Natl Acad Sci USA 109:16928–16933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Bleck M et al (2014) Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. Proc Natl Acad Sci USA 111:12211–12216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sette P et al (2016) HIV-1 nucleocapsid mimics the membrane adaptor syntenin PDZ to gain access to ESCRTs and promote virus budding. Cell Host Microbe 19:336–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. McCullough J et al (2015) Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350:1548–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Tang S et al (2015) Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. eLife 4:e12548

    Google Scholar 

  227. Tang S et al (2016) ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife 5:e15507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Lata S et al (2008) Helical structures of ESCRT-III are disassembled by VPS4. Science 321:1354–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Henne WM, Buchkovich NJ, Zhao Y, Emr SD (2012) The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151:356–371

    Article  CAS  PubMed  Google Scholar 

  230. Shen QT et al (2014) Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J Cell Biol 206:763–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Guizetti J et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620

    Article  CAS  PubMed  Google Scholar 

  232. Cashikar AG et al (2014) Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife 3:e02184

    Article  PubMed Central  CAS  Google Scholar 

  233. Hanson PI, Roth R, Lin Y, Heuser JE (2008) Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol 180:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci USA 108:4846–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Chiaruttini N, Roux A (2017) Dynamic and elastic shape transitions in curved ESCRT-III filaments. Curr Opin Cell Biol 47:126–135

    Article  CAS  PubMed  Google Scholar 

  236. Fabrikant G et al (2009) Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput Biol 5:e1000575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Reid E et al (2005) The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Genet 14:19–38

    Article  CAS  PubMed  Google Scholar 

  238. Chiaruttini N et al (2015) Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163:866–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Lenz M, Crow DJ, Joanny JF (2009) Membrane buckling induced by curved filaments. Phys Rev Lett 103:038101

    Article  PubMed  CAS  Google Scholar 

  240. Peter BJ et al (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499

    Article  CAS  PubMed  Google Scholar 

  241. Daumke O, Roux A, Haucke V (2014) BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156:882–892

    Article  CAS  PubMed  Google Scholar 

  242. Sorre B et al (2012) Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc Natl Acad Sci USA 109:173–178

    Article  CAS  PubMed  Google Scholar 

  243. Boucrot E et al (2012) Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149:124–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Farsad K et al (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Yoshida Y et al (2004) The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J 23:3483–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Hohendahl A et al (2017) Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 6:e26856

    Article  PubMed  PubMed Central  Google Scholar 

  247. Römer W et al (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675

    Article  PubMed  CAS  Google Scholar 

  248. Römer W et al (2010) Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140:540–553

    Article  PubMed  CAS  Google Scholar 

  249. Renard HF et al (2015) Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517:493–496

    Article  CAS  PubMed  Google Scholar 

  250. Boucrot E et al (2015) Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517:460–465

    Article  CAS  PubMed  Google Scholar 

  251. Simunovic M et al (2016) How curvature-generating proteins build scaffolds on membrane nanotubes. Proc Natl Acad Sci USA 113:11226–11231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Roux A et al (2010) Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci USA 107:4141–4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Simunovic M et al (2017) Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170:172–184.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhao WD et al (2016) Hemi-fused structure mediates and controls fusion and fission in live cells. Nature 534:548–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tareste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tareste, D., Roux, A. (2018). Common Energetic and Mechanical Features of Membrane Fusion and Fission Machineries. In: Bassereau, P., Sens, P. (eds) Physics of Biological Membranes. Springer, Cham. https://doi.org/10.1007/978-3-030-00630-3_16

Download citation

Publish with us

Policies and ethics