Common Energetic and Mechanical Features of Membrane Fusion and Fission Machineries

  • David TaresteEmail author
  • Aurélien Roux


Membrane fusion and fission reactions are two antagonistic processes involved in several important biological functions, including intracellular and intercellular communication, viral infection, and the maintenance of shape and function of the mitochondrial and endoplasmic reticulum networks. Both reactions imply transient membrane remodeling events requiring a high energy input to overcome the intrinsic stability of the membrane lipid bilayer structure. This energy is provided by specialized proteins that accompany membranes on their path to fusion/fission. In this chapter, we present the physical principles of membrane fusion and fission reactions, review the several mechanisms used by specific proteins to mediate membrane fusion and fission, and emphasize the common strategies employed by these proteins to manipulate lipid bilayers during fusion/fission events.


Membrane Fusion Fission SNARE Dynamin Energy 


  1. 1.
    Söllner TH, Rothman JE (1996) Molecular machinery mediating vesicle budding, docking and fusion. Cell Struct Funct 21:407–412PubMedCrossRefGoogle Scholar
  2. 2.
    Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99PubMedCrossRefGoogle Scholar
  3. 3.
    Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581:2150–2155PubMedCrossRefGoogle Scholar
  4. 4.
    Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207PubMedCrossRefGoogle Scholar
  5. 5.
    Kozlov MM, McMahon HT, Chernomordik LV (2010) Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci 35:699–706PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–382PubMedCrossRefGoogle Scholar
  7. 7.
    Düzgüneş N, Wilschut J, Fraley R, Papahadjopoulos D (1981) Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochim Biophys Acta 642:182–195PubMedCrossRefGoogle Scholar
  8. 8.
    Nir S, Bentz J, Wilschut J, Duzgunes N (1983) Aggregation and fusion of phospholipid vesicles. Prog Surf Sci 13:1–124CrossRefGoogle Scholar
  9. 9.
    Helm CA, Israelachvili JN, McGuiggan PM (1989) Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246:919–922PubMedCrossRefGoogle Scholar
  10. 10.
    Nir S, Wilschut J, Bentz J (1982) The rate of fusion of phospholipid vesicles and the role of bilayer curvature. Biochim Biophys Acta 688:275–278PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Chen H et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Davidson RL, Gerald PS (1976) Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol. Somatic Cell Genet 2:165–176PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Schlegel R, McEvoy L (1987) Red cell-mediated microinjection. Methods Enzymol 149:293–300PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Szoka F et al (1981) Use of lectins and polyethylene glycol for fusion of glycolipid-containing liposomes with eukaryotic cells. Proc Natl Acad Sci USA 78:1685–1689PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lentz BR (1994) Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chem Phys Lipids 73:91–106PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lentz BR (2007) PEG as a tool to gain insight into membrane fusion. Eur Biophys J 36:315–326PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Burgess SW, McIntosh TJ, Lentz BR (1992) Poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation. Biochemistry 31:2653–2661PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Haque E, McIntosh TJ, Lentz BR (2001) Influence of lipid composition on physical properties and PEG-mediated fusion of curved and uncurved model membrane vesicles: “ nature’s own ” fusogenic. Biochemistry 40:4340–4348PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kuhl T et al (1996) Direct measurement of polyethylene glycol induced depletion attraction between lipid bilayers. Langmuir 12:3003–3014CrossRefGoogle Scholar
  20. 20.
    Evans E, Needham D (1988) Attraction between lipid bilayer membranes in concentrated solutions of nonadsorbing polymers: comparison of mean-field theory with measurements of adhesion energy. Macromolecules 21:1822–1831CrossRefGoogle Scholar
  21. 21.
    Boni LT, Stewart TP, Alderfer JL, Hui SW (1981) Lipid-polyethylene glycol interactions: II. Formation of defects in bilayers. J Membr Biol 62:71–77PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Tilcock CPS, Fisher D (1979) Interaction of phospholipid membranes with poly(ethylene glycol)s. Biochim Biophys Acta 577:53–61CrossRefGoogle Scholar
  23. 23.
    Lentz BR, McIntyre GF, Parks DJ, Yates JC, Massenburg D (1992) Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles. Biochemistry 31:2643–2653PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Talbot WA, Zheng LX, Lentz BR (1997) Acyl chain unsaturation and vesicle curvature alter outer leaflet packing and promote poly(ethylene glycol)-mediated membrane fusion. Biochemistry 36:5827–5836PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Yang Q, Guo Y, Li L, Hui SW (1997) Effects of lipid headgroup and packing stress on poly(ethylene glycol)-induced phospholipid vesicle aggregation and fusion. Biophys J 73:277–282PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Marra J, Israelachvili J (1985) Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry 24:4608–4618CrossRefGoogle Scholar
  27. 27.
    Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Haque ME, Lentz BR (2004) Roles of curvature and hydrophobic interstice energy in fusion: studies of lipid perturbant effects. Biochemistry 43:3507–3517PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Meers P, Ali S, Erukulla R, Janoff AS (2000) Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion. Biochim Biophys Acta 1467:227–243PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lee J, Lentz BR (1997) Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry 36:6251–6259PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chernomordik LV, Melikyan GB, Chizmadzhev YA (1987) Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim Biophys Acta Rev Biomembr 906:309–352CrossRefGoogle Scholar
  32. 32.
    Lei G, MacDonald RC (2003) Lipid bilayer vesicle fusion: intermediates captured by high-speed microfluorescence spectroscopy. Biophys J 85:1585–1599PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Heuvingh J, Pincet F, Cribier S (2004) Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance. Eur Phys J E Soft Matter 14:269–276PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Chanturiya A, Chernomordik LV, Zimmerberg J (1997) Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc Natl Acad Sci USA 94:14423–14428PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lee J, Lentz BR (1998) Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proc Natl Acad Sci USA 95:9274–9279PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chernomordik L, Chanturiya A, Green J, Zimmerberg J (1995) The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys J 69:922–929PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cohen FS, Zimmerberg J, Finkelstein A (1980) Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J Gen Physiol 75:251–270PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Verkleij AJ, Mombers C, Gerritsen WJ, Leunissen-Bijvelt L, Cullis PR (1979) Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing. Biochim Biophys Acta 555:358–361PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Siegel DP, Burns JL, Chestnut MH, Talmon Y (1989) Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy. Biophys J 56:161–169PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Siegel DP, Epand RM (1997) The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J 73:3089–3111PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Yang L, Huang HW (2002) Observation of a membrane fusion intermediate structure. Science 297:1877–1879PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Aeffner S, Reusch T, Weinhausen B, Salditt T (2012) Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc Natl Acad Sci USA 109:E1609–E1618PubMedCrossRefGoogle Scholar
  43. 43.
    Knecht V, Marrink SJ (2007) Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophys J 92:4254–4261PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Müller M, Katsov K, Schick M (2003) A new mechanism of model membrane fusion determined from Monte Carlo simulation. Biophys J 85:1611–1623PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jahn R, Grubmüller H (2002) Membrane fusion. Curr Opin Cell Biol 14:488–495PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Efrat A, Chernomordik LV, Kozlov MM (2007) Point-like protrusion as a prestalk intermediate in membrane fusion pathway. Biophys J 92:L61–L63PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kozlovsky Y, Kozlov MM (2002) Stalk model of membrane fusion: solution of energy crisis. Biophys J 82:882–895PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kuzmin PI, Zimmerberg J, Chizmadzhev YA, Cohen FS (2001) A quantitative model for membrane fusion based on low-energy intermediates. Proc Natl Acad Sci USA 98:7235–7240PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kozlovsky Y, Chernomordik LV, Kozlov MM (2002) Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys J 83:2634–2651PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Siegel DP (1993) Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J 65:2124–2140PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Markin VS, Albanesi JP (2002) Membrane fusion: stalk model revisited. Biophys J 82:693–712PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jackson MB (2009) Minimum membrane bending energies of fusion pores. J Membr Biol 231:101–115PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Marrink SJ, Mark AE (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc 125:11144–11145PubMedCrossRefGoogle Scholar
  55. 55.
    Grafmüller A, Shillcock J, Lipowsky R (2009) The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. Biophys J 96:2658–2675PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Noguchi H, Takasu M (2001) Fusion pathways of vesicles: a Brownian dynamics simulation. J Chem Phys 115:9547CrossRefGoogle Scholar
  57. 57.
    Lentz BR, Talbot W, Lee J, Zheng LX (1997) Transbilayer lipid redistribution accompanies poly(ethylene glycol) treatment of model membranes but is not induced by fusion. Biochemistry 36:2076–2083PubMedCrossRefGoogle Scholar
  58. 58.
    Evans KO, Lentz BR (2002) Kinetics of lipid rearrangements during poly(ethylene glycol)-mediated fusion of highly curved unilamellar vesicles. Biochemistry 41:1241–1249PubMedCrossRefGoogle Scholar
  59. 59.
    Chernomordik LV et al (1985) The shape of lipid molecules and monolayer membrane fusion. Biochim Biophys Acta Biomembr 812:643–655CrossRefGoogle Scholar
  60. 60.
    Kasson PM, Pande VS (2007) Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLoS Comput Biol 3:e220PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lee JY, Schick M (2007) Field theoretic study of bilayer membrane fusion III: membranes with leaves of different composition. Biophys J 92:3938–3948PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hed G, Safran SA (2003) Initiation and dynamics of hemifusion in lipid bilayers. Biophys J 85:381–389PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chizmadzhev YA, Kuzmin PI, Kumenko DA, Zimmerberg J, Cohen FS (2000) Dynamics of fusion pores connecting membranes of different tensions. Biophys J 78:2241–2256PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kozlovsky Y, Kozlov MM (2003) Membrane fission: model for intermediate structures. Biophys J 85:85–96PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shlomovitz R, Gov NS (2009) Membrane-mediated interactions drive the condensation and coalescence of FtsZ rings. Phys Biol 6:046017PubMedCrossRefGoogle Scholar
  66. 66.
    Morlot S et al (2012) Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151:619–629PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jülicher F, Lipowsky R (1996) Shape transformations of vesicles with intramembrane domains. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 53:2670–2683PubMedGoogle Scholar
  69. 69.
    Jülicher F, Lipowsky R (1993) Domain-induced budding of vesicles. Phys Rev Lett 70:2964–2967PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824CrossRefGoogle Scholar
  71. 71.
    Stachowiak JC, Hayden CC, Sasaki DY (2010) Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc Natl Acad Sci USA 107:7781–7786PubMedCrossRefGoogle Scholar
  72. 72.
    Sens P, Turner MS (2006) Budded membrane microdomains as tension regulators. Phys Rev E Stat Nonlinear Soft Matter Phys 73:031918CrossRefGoogle Scholar
  73. 73.
    Sens P (2004) Dynamics of nonequilibrium membrane bud formation. Phys Rev Lett 93:108103PubMedCrossRefGoogle Scholar
  74. 74.
    Allain JM, Ben Amar M (2006) Budding and fission of a multiphase vesicle. Eur Phys J E Soft Matter 20:409–420PubMedCrossRefGoogle Scholar
  75. 75.
    Allain JM, Storm C, Roux A, Ben Amar M, Joanny JF (2004) Fission of a multiphase membrane tube. Phys Rev Lett 93:158104PubMedCrossRefGoogle Scholar
  76. 76.
    Roux A et al (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24:1537–1545PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lenz M, Morlot S, Roux A (2009) Mechanical requirements for membrane fission: common facts from various examples. FEBS Lett 583:3839–3846PubMedCrossRefGoogle Scholar
  78. 78.
    Leibler S (1986) Curvature instability in membranes. J Phys 47:507–516CrossRefGoogle Scholar
  79. 79.
    Tsafrir I, Caspi Y, Guedeau-Boudeville MA, Arzi T, Stavans J (2003) Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91:138102PubMedCrossRefGoogle Scholar
  80. 80.
    Tsafrir I et al (2001) Pearling instabilities of membrane tubes with anchored polymers. Phys Rev Lett 86:1138–1141PubMedCrossRefGoogle Scholar
  81. 81.
    Stachowiak JC et al (2012) Membrane bending by protein-protein crowding. Nat Cell Biol 14:944–949PubMedCrossRefGoogle Scholar
  82. 82.
    Snead WT et al (2017) Membrane fission by protein crowding. Proc Natl Acad Sci USA 114:E3258–E3267PubMedCrossRefGoogle Scholar
  83. 83.
    Kozlov MM et al (2014) Mechanisms shaping cell membranes. Curr Opin Cell Biol 29:53–60PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Stachowiak JC, Brodsky FM, Miller EA (2013) A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat Cell Biol 15:1019–1027PubMedCrossRefGoogle Scholar
  85. 85.
    Evans E, Yeung A (1994) Hidden dynamics in rapid changes of bilayer shape. Chem Phys Lipids 73:39–56CrossRefGoogle Scholar
  86. 86.
    Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418CrossRefGoogle Scholar
  87. 87.
    Nonet ML, Saifee O, Zhao H, Rand JB, Wei L (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18:70–80PubMedCrossRefGoogle Scholar
  88. 88.
    Deitcher DL et al (1998) Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci 18:2028–2039PubMedCrossRefGoogle Scholar
  89. 89.
    Schoch S et al (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1117–1122PubMedCrossRefGoogle Scholar
  90. 90.
    Washbourne P et al (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5:19–26PubMedCrossRefGoogle Scholar
  91. 91.
    Schiavo G et al (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835CrossRefGoogle Scholar
  92. 92.
    Blasi J et al (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365:160–163CrossRefGoogle Scholar
  93. 93.
    Blasi J et al (1993) Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 12:4821–4828PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Weber T et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772PubMedCrossRefGoogle Scholar
  95. 95.
    Hu C et al (2003) Fusion of cells by flipped SNAREs. Science 300:1745–1749PubMedCrossRefGoogle Scholar
  96. 96.
    Dietrich LE, Boeddinghaus C, LaGrassa TJ, Ungermann C (2003) Control of eukaryotic membrane fusion by N-terminal domains of SNARE proteins. Biochim Biophys Acta 1641:111–119PubMedCrossRefGoogle Scholar
  97. 97.
    Daste F, Galli T, Tareste D (2015) Structure and function of longin SNAREs. J Cell Sci 128:4263–4272PubMedCrossRefGoogle Scholar
  98. 98.
    Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353PubMedCrossRefGoogle Scholar
  99. 99.
    Melia TJ et al (2002) Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J Cell Biol 158:929–940PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Sørensen JB et al (2006) Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25:955–966PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Fasshauer D, Antonin W, Subramaniam V, Jahn R (2002) SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat Struct Biol 9:144–151PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Hayashi T et al (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13:5051–5061PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    May AP, Whiteheart SW, Weis WI (2001) Unraveling the mechanism of the vesicle transport ATPase NSF, the N-ethylmaleimide-sensitive factor. J Biol Chem 276:21991–21994PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Li F et al (2007) Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Liu W, Montana V, Parpura V, Mohideen U (2009) Single Molecule Measurements of Interaction Free Energies Between the Proteins Within Binary and Ternary SNARE Complexes. J Nanoneurosci 1:120–129PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Min D et al (2013) Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat Commun 4:1705PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Gao Y et al (2012) Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340–1343PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cohen FS, Melikyan GB (2004) The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol 199:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Ryham RJ, Klotz TS, Yao L, Cohen FS (2016) Calculating transition energy barriers and characterizing activation states for steps of fusion. Biophys J 110:1110–1124PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Van den Bogaart G et al (2010) One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol 17:358–364PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hua Y, Scheller RH (2001) Three SNARE complexes cooperate to mediate membrane fusion. Proc Natl Acad Sci USA 98:8065–8070PubMedCrossRefGoogle Scholar
  113. 113.
    Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–292PubMedCrossRefGoogle Scholar
  114. 114.
    Mohrmann R, de Wit H, Verhage M, Neher E, Sørensen JB (2010) Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330:502–505PubMedCrossRefGoogle Scholar
  115. 115.
    Sinha R, Ahmed S, Jahn R, Klingauf J (2011) Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. Proc Natl Acad Sci USA 108:14318–14323PubMedCrossRefGoogle Scholar
  116. 116.
    Shi L et al (2012) SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–1359PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lu X, Zhang F, McNew JA, Shin YK (2005) Membrane fusion induced by neuronal SNAREs transits through hemifusion. J Biol Chem 280:30538–30541PubMedCrossRefGoogle Scholar
  118. 118.
    Yoon TY, Okumus B, Zhang F, Shin YK, Ha T (2006) Multiple intermediates in SNARE-induced membrane fusion. Proc Natl Acad Sci USA 103:19731–19736PubMedCrossRefGoogle Scholar
  119. 119.
    Liu T, Wang T, Chapman ER, Weisshaar JC (2008) Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophys J 94:1303–1314PubMedCrossRefGoogle Scholar
  120. 120.
    Zampighi GA et al (2006) Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. Biophys J 91:2910–2918PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wong JL, Koppel DE, Cowan AE, Wessel GM (2007) Membrane hemifusion is a stable intermediate of exocytosis. Dev Cell 12:653–659PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Risselada HJ, Kutzner C, Grubmüller H (2011) Caught in the act: visualization of SNARE-mediated fusion events in molecular detail. Chembiochem 12:1049–1055PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15:690–698PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Podbilewicz B (2014) Virus and cell fusion mechanisms. Annu Rev Cell Dev Biol 30:111–139PubMedCrossRefGoogle Scholar
  125. 125.
    Tamm LK, Crane J, Kiessling V (2003) Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr Opin Struct Biol 13:453–466PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Hamilton BS, Whittaker GR, Daniel S (2012) Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4:1144–1168PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Han X, Bushweller JH, Cafiso DS, Tamm LK (2001) Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 8:715–720PubMedCrossRefGoogle Scholar
  128. 128.
    Lorieau JL, Louis JM, Bax A (2010) The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface. Proc Natl Acad Sci USA 107:11341–11346PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Kanaseki T, Kawasaki K, Murata M, Ikeuchi Y, Ohnishi S (1997) Structural features of membrane fusion between influenza virus and liposome as revealed by quick-freezing electron microscopy. J Cell Biol 137:1041–1056PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Frolov VA, Cho MS, Bronk P, Reese TS, Zimmerberg J (2000) Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic 1:622–630PubMedCrossRefGoogle Scholar
  131. 131.
    Jelesarov I, Lu M (2001) Thermodynamics of trimer-of-hairpins formation by the SIV gp41 envelope protein. J Mol Biol 307:637–656PubMedCrossRefGoogle Scholar
  132. 132.
    Li Y, Han X, Tamm LK (2003) Thermodynamics of fusion peptide-membrane interactions. Biochemistry 42:7245–7251PubMedCrossRefGoogle Scholar
  133. 133.
    Kemble GW, Danieli T, White JM (1994) Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76:383–391CrossRefGoogle Scholar
  134. 134.
    Melikyan GB, White JM, Cohen FS (1995) GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol 131:679–691PubMedCrossRefGoogle Scholar
  135. 135.
    Armstrong RT, Kushnir AS, White JM (2000) The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J Cell Biol 151:425–437PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Gutman O, Danieli T, White JM, Henis YI (1993) Effects of exposure to low pH on the lateral mobility of influenza hemagglutinin expressed at the cell surface: correlation between mobility inhibition and inactivation. Biochemistry 32:101–106PubMedCrossRefGoogle Scholar
  137. 137.
    Floyd DL, Ragains JR, Skehel JJ, Harrison SC, van Oijen AM (2008) Single-particle kinetics of influenza virus membrane fusion. Proc Natl Acad Sci USA 105:15382–15387PubMedCrossRefGoogle Scholar
  138. 138.
    Ivanovic T, Choi JL, Whelan SP, van Oijen AM, Harrison SC (2013) Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. eLife 2:e00333Google Scholar
  139. 139.
    Chernomordik LV, Frolov VA, Leikina E, Bronk P, Zimmerberg J (1998) The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol 140:1369–1382PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Kozlov MM, Chernomordik LV (2002) The protein coat in membrane fusion: lessons from fission. Traffic 3:256–267PubMedCrossRefGoogle Scholar
  141. 141.
    McNew JA, Sondermann H, Lee T, Stern M, Brandizzi F (2013) GTP-dependent membrane fusion. Annu Rev Cell Dev Biol 29:529–550PubMedCrossRefGoogle Scholar
  142. 142.
    Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556PubMedCrossRefGoogle Scholar
  143. 143.
    Hu J, Prinz WA, Rapoport TA (2011) Weaving the web of ER tubules. Cell 147:1226–1231PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Bian X et al (2011) Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc Natl Acad Sci USA 108:3976–3981PubMedCrossRefGoogle Scholar
  145. 145.
    Byrnes LJ, Sondermann H (2011) Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc Natl Acad Sci USA 108:2216–2221PubMedCrossRefGoogle Scholar
  146. 146.
    Byrnes LJ et al (2013) Structural basis for conformational switching and GTP loading of the large G protein atlastin. EMBO J 32:369–384PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Orso G et al (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460:978–983PubMedCrossRefGoogle Scholar
  148. 148.
    Moss TJ, Andreazza C, Verma A, Daga A, McNew JA (2011) Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain. Proc Natl Acad Sci USA 108:11133–11138PubMedCrossRefGoogle Scholar
  149. 149.
    Liu TY et al (2012) Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc Natl Acad Sci USA 109:E2146–E2154PubMedCrossRefGoogle Scholar
  150. 150.
    Liu TY et al (2015) Cis and trans interactions between atlastin molecules during membrane fusion. Proc Natl Acad Sci USA 112:E1851–E1860PubMedCrossRefGoogle Scholar
  151. 151.
    Faust JE et al (2015) The Atlastin C-terminal tail is an amphipathic helix that perturbs the bilayer structure during endoplasmic reticulum homotypic fusion. J Biol Chem 290:4772–4783PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Zick M et al (2009) Distinct roles of the two isoforms of the dynamin-like GTPase Mgm1 in mitochondrial fusion. FEBS Lett 583:2237–2243PubMedCrossRefGoogle Scholar
  153. 153.
    DeVay RM et al (2009) Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol 186:793–803PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Ban T, Heymann JA, Song Z, Hinshaw JE, Chan DC (2010) OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum Mol Genet 19:2113–2122PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Koshiba T et al (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–862PubMedCrossRefGoogle Scholar
  156. 156.
    Daste F et al (2018) The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep 19:e43637PubMedCrossRefGoogle Scholar
  157. 157.
    Meeusen S, McCaffery JM, Nunnari J (2004) Mitochondrial fusion intermediates revealed in vitro. Science 305:1747–1752PubMedCrossRefGoogle Scholar
  158. 158.
    Brandt T, Cavellini L, Kühlbrandt W, Cohen MM (2016) A mitofusin-dependent docking ring complex triggers mitochondrial fusion in vitro. eLife 5:e14618PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Qi Y et al (2016) Structures of human mitofusin 1 provide insight into mitochondrial tethering. J Cell Biol 215:621–629PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Cao YL et al (2017) MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 542:372–376PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Aguilar PS et al (2013) Genetic basis of cell-cell fusion mechanisms. Trends Genet 29:427–437PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Mohler WA et al (2002) The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev Cell 2:355–362PubMedCrossRefGoogle Scholar
  163. 163.
    Shemer G et al (2004) EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Curr Biol 14:1587–1591PubMedCrossRefGoogle Scholar
  164. 164.
    Podbilewicz B et al (2006) The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev Cell 11:471–481PubMedCrossRefGoogle Scholar
  165. 165.
    Pérez-Vargas J et al (2014) Structural basis of eukaryotic cell-cell fusion. Cell 157:407–419PubMedCrossRefGoogle Scholar
  166. 166.
    Shilagardi K et al (2013) Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science 340:359–363PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Morlot S, Roux A (2013) Mechanics of dynamin-mediated membrane fission. Annu Rev Biophys 42:629–649PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Van Engelenburg SB et al (2014) Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343:653–656PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:421–432CrossRefGoogle Scholar
  170. 170.
    Chen MS et al (1991) Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351:583–586CrossRefGoogle Scholar
  171. 171.
    Koenig JH, Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9:3844–3860PubMedCrossRefGoogle Scholar
  172. 172.
    Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127:915–934PubMedCrossRefGoogle Scholar
  173. 173.
    Damke H, Baba T, van der Bliek AM, Schmid SL (1995) Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 131:69–80PubMedCrossRefGoogle Scholar
  174. 174.
    Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374:190–192PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Takei K, McPherson PS, Schmid SL, De Camilli P (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374:186–190PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Antonny B et al (2016) Membrane fission by dynamin: what we know and what we need to know. EMBO J 35:2270–2284PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Sweitzer SM, Hinshaw JE (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93:1021–1029PubMedCrossRefGoogle Scholar
  178. 178.
    Danino D, Moon KH, Hinshaw JE (2004) Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J Struct Biol 147:259–267PubMedCrossRefGoogle Scholar
  179. 179.
    Zhang P, Hinshaw JE (2001) Three-dimensional reconstruction of dynamin in the constricted state. Nat Cell Biol 3:922–926PubMedCrossRefGoogle Scholar
  180. 180.
    Chen YJ, Zhang P, Egelman EH, Hinshaw JE (2004) The stalk region of dynamin drives the constriction of dynamin tubes. Nat Struct Mol Biol 11:574–575PubMedCrossRefGoogle Scholar
  181. 181.
    Sundborger AC et al (2014) A dynamin mutant defines a superconstricted prefission state. Cell Rep 8:734–742PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Ford MG, Jenni S, Nunnari J (2011) The crystal structure of dynamin. Nature 477:561–566PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Faelber K et al (2011) Crystal structure of nucleotide-free dynamin. Nature 477:556–560PubMedCrossRefGoogle Scholar
  184. 184.
    Reubold TF et al (2015) Crystal structure of the dynamin tetramer. Nature 525:404–408PubMedCrossRefGoogle Scholar
  185. 185.
    Chappie JS et al (2009) An intramolecular signaling element that modulates dynamin function in vitro and in vivo. Mol Biol Cell 20:3561–3571PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Chappie JS, Acharya S, Leonard M, Schmid SL, Dyda F (2010) G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465:435–440PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Mears JA, Ray P, Hinshaw JE (2007) A corkscrew model for dynamin constriction. Structure 15:1190–1202PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Chappie JS et al (2011) A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147:209–222PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Mattila JP et al (2015) A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524:109–113PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Roux A, Uyhazi K, Frost A, De Camilli P (2006) GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441:528–531PubMedCrossRefGoogle Scholar
  191. 191.
    Morlot S, Lenz M, Prost J, Joanny JF, Roux A (2010) Deformation of dynamin helices damped by membrane friction. Biophys J 99:3580–3588PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Lenz M, Prost J, Joanny JF (2008) Mechanochemical action of the dynamin protein. Phys Rev E Stat Nonlinear Soft Matter Phys 78:011911CrossRefGoogle Scholar
  193. 193.
    Perrais D, Merrifield CJ (2005) Dynamics of endocytic vesicle creation. Dev Cell 9:581–592PubMedCrossRefGoogle Scholar
  194. 194.
    Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282PubMedCrossRefGoogle Scholar
  195. 195.
    Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    McCullough J, Colf LA, Sundquist WI (2013) Membrane fission reactions of the mammalian ESCRT pathway. Annu Rev Biochem 82:663–692PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11:556–566PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912PubMedCrossRefGoogle Scholar
  199. 199.
    Garrus JE et al (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65PubMedCrossRefGoogle Scholar
  200. 200.
    Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG (2015) ESCRT-III controls nuclear envelope reformation. Nature 522:236–239PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Vietri M et al (2015) Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522:231–235PubMedCrossRefGoogle Scholar
  202. 202.
    Bruns C, McCaffery JM, Curwin AJ, Duran JM, Malhotra V (2011) Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J Cell Biol 195:979–992PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Spitzer C et al (2015) The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell 27:391–402PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Gao C et al (2015) Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc Natl Acad Sci USA 112:1886–1891PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Hurley JH (2015) ESCRTs are everywhere. EMBO J 34:2398–2407PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Teis D, Saksena S, Emr SD (2008) Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 15:578–589PubMedCrossRefGoogle Scholar
  207. 207.
    Hurley JH (2010) The ESCRT complexes. Crit Rev Biochem Mol Biol 45:463–487PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Mierzwa B, Gerlich DW (2014) Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 31:525–538PubMedCrossRefGoogle Scholar
  209. 209.
    Elia N, Fabrikant G, Kozlov MM, Lippincott-Schwartz J (2012) Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling. Biophys J 102:2309–2320PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Saksena S, Wahlman J, Teis D, Johnson AE, Emr SD (2009) Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136:97–109PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Obita T et al (2007) Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449:735–739PubMedCrossRefGoogle Scholar
  212. 212.
    Adell MA et al (2014) Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J Cell Biol 205:33–49PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Yang B, Stjepanovic G, Shen Q, Martin A, Hurley JH (2015) Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat Struct Mol Biol 22:492–498PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Mierzwa BE et al (2017) Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat Cell Biol 19:787–798PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Campsteijn C, Vietri M, Stenmark H (2016) Novel ESCRT functions in cell biology: spiraling out of control? Curr Opin Cell Biol 41:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Yang D et al (2008) Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat Struct Mol Biol 15:1278–1286PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Pires R et al (2009) A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17:843–856PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Bissig C et al (2013) Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. Dev Cell 25:364–373PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Bissig C, Gruenberg J (2014) ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 24:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Christ L et al (2016) ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J Cell Biol 212:499–513PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Prescher J et al (2015) Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLoS Pathog 11:e1004677PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Carlson LA, Hurley JH (2012) In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc Natl Acad Sci USA 109:16928–16933PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Bleck M et al (2014) Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. Proc Natl Acad Sci USA 111:12211–12216PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Sette P et al (2016) HIV-1 nucleocapsid mimics the membrane adaptor syntenin PDZ to gain access to ESCRTs and promote virus budding. Cell Host Microbe 19:336–348PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    McCullough J et al (2015) Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350:1548–1551PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Tang S et al (2015) Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. eLife 4:e12548Google Scholar
  227. 227.
    Tang S et al (2016) ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife 5:e15507PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Lata S et al (2008) Helical structures of ESCRT-III are disassembled by VPS4. Science 321:1354–1357PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Henne WM, Buchkovich NJ, Zhao Y, Emr SD (2012) The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151:356–371PubMedCrossRefGoogle Scholar
  230. 230.
    Shen QT et al (2014) Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J Cell Biol 206:763–777PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Guizetti J et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620PubMedCrossRefGoogle Scholar
  232. 232.
    Cashikar AG et al (2014) Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife 3:e02184PubMedCentralCrossRefGoogle Scholar
  233. 233.
    Hanson PI, Roth R, Lin Y, Heuser JE (2008) Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol 180:389–402PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci USA 108:4846–4851PubMedCrossRefGoogle Scholar
  235. 235.
    Chiaruttini N, Roux A (2017) Dynamic and elastic shape transitions in curved ESCRT-III filaments. Curr Opin Cell Biol 47:126–135PubMedCrossRefGoogle Scholar
  236. 236.
    Fabrikant G et al (2009) Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput Biol 5:e1000575PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Reid E et al (2005) The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Genet 14:19–38PubMedCrossRefGoogle Scholar
  238. 238.
    Chiaruttini N et al (2015) Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163:866–879PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Lenz M, Crow DJ, Joanny JF (2009) Membrane buckling induced by curved filaments. Phys Rev Lett 103:038101PubMedCrossRefGoogle Scholar
  240. 240.
    Peter BJ et al (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Daumke O, Roux A, Haucke V (2014) BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156:882–892PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Sorre B et al (2012) Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc Natl Acad Sci USA 109:173–178CrossRefGoogle Scholar
  243. 243.
    Boucrot E et al (2012) Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149:124–136PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Farsad K et al (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155:193–200PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Yoshida Y et al (2004) The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J 23:3483–3491PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Hohendahl A et al (2017) Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 6:e26856PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Römer W et al (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675PubMedCrossRefGoogle Scholar
  248. 248.
    Römer W et al (2010) Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140:540–553PubMedCrossRefGoogle Scholar
  249. 249.
    Renard HF et al (2015) Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517:493–496PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Boucrot E et al (2015) Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517:460–465PubMedCrossRefGoogle Scholar
  251. 251.
    Simunovic M et al (2016) How curvature-generating proteins build scaffolds on membrane nanotubes. Proc Natl Acad Sci USA 113:11226–11231PubMedCrossRefGoogle Scholar
  252. 252.
    Roux A et al (2010) Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci USA 107:4141–4146PubMedCrossRefGoogle Scholar
  253. 253.
    Simunovic M et al (2017) Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170:172–184.e11PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Zhao WD et al (2016) Hemi-fused structure mediates and controls fusion and fission in live cells. Nature 534:548–552PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Psychiatry and NeuroscienceUMR S-894 INSERM-Paris Descartes UniversityParisFrance
  2. 2.Biochemistry DepartmentGeneva UniversityGenevaSwitzerland

Personalised recommendations