Skip to main content

Mechanosensitivity of Membrane Budding and Trafficking

  • Chapter
  • First Online:
Physics of Biological Membranes
  • 1781 Accesses

Abstract

Intracellular compartments continually exchange material transported by small vesicles or tubules, which are formed in the membrane of the donor compartments and eventually fuse with the membrane of the receptor compartments. The formation and fission of a membrane bud giving rise to a new object and the fusion are controlled to some extent by the mechanical properties of the membranes, in particular their tension. In this chapter, we review the different mechanisms of vesicle and tubule budding and analyze the influence of the membrane tension on these processes using basic considerations of thermodynamics and mechanics. In any case, vesicle and tubule production can be impaired at high enough tension. Next, we discuss the influence of tension on membrane fusion, which is a less understood problem. Finally, since the release/absorption of vesicles or tubules should affect the tension of the donor/receptor, we speculate about the possible regulatory role of the membrane tension on intracellular trafficking and compartments stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal NJ, Nukpezah J, Radhakrishnan R (2010) Minimal mesoscale model for protein-mediated vesiculation in clathrin-dependent endocytosis. PLoS Comput Biol 6(9):e1000926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. Garland, New York

    Book  Google Scholar 

  3. Antonny B (2006) Membrane deformation by protein coats. Curr Opin Cell Biol 18(4):386–394

    Article  CAS  PubMed  Google Scholar 

  4. Ayton GS, Blood PD, Voth GA (2007) Membrane remodeling from n-bar domain interactions: insights from multi-scale simulation. Biophys J 92(10):3595–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beck R, Ravet M, Wieland FT, Cassel D (2009) The COPI system: molecular mechanisms and function. FEBS Lett 583(17):2701–2709

    Article  CAS  PubMed  Google Scholar 

  6. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2):153–166

    Article  CAS  PubMed  Google Scholar 

  7. Boulant S, Kural C, Zeeh J-C, Ubelmann F, Kirchhausen T (2011) Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat Cell Biol 13(9):1124–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bukman DJ, Yao JH, Wortis M (1996) Stability of cylindrical vesicles under axial tension. Phys Rev E 54(5):5463

    Article  CAS  Google Scholar 

  9. Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12(5):671–682

    Article  CAS  PubMed  Google Scholar 

  10. Campelo F, McMahon HT, Kozlov MM (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95(5):2325–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carlton J, Bujny M, Peter BJ, Oorschot VMJ, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr Biol 14(20):1791–1800

    Article  CAS  PubMed  Google Scholar 

  12. Cheng Y, Boll W, Kirchhausen T, Harrison SC, Walz T (2007) Cryo-electron tomography of clathrin-coated vesicles: structural implications for coat assembly. J Mol Biol 365(3):892–899

    Article  CAS  PubMed  Google Scholar 

  13. Chernomordik LV, Kozlov MM Mechanics of membrane fusion. Nat Struct Mol Biol 15(7):675–683 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chizmadzhev YA, Kumenko DA, Kuzmin PI, Chernomordik LV, Zimmerberg J, Cohen FS (1999) Lipid flow through fusion pores connecting membranes of different tensions. Biophys J 76(6):2951–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen FS, Akabas MH, Finkelstein A (1982) Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science 217(4558):458–460

    Article  CAS  PubMed  Google Scholar 

  16. Cullen PJ (2008) Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 9(7):574–582

    Article  CAS  PubMed  Google Scholar 

  17. Cullen PJ, Korswagen HC (2012) Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 14(1):29–37

    Article  CAS  Google Scholar 

  18. Dabora SL, Sheetz MF (1988) The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54(1):27–35

    Article  CAS  PubMed  Google Scholar 

  19. den Otter WK, Briels WJ (2011) The generation of curved clathrin coats from flat plaques. Traffic 12(10):1407–1416

    Article  CAS  Google Scholar 

  20. Derényi I, Jülicher F, Prost J (2002) Formation and interaction of membrane tubes. Phys Rev Lett 88(23):238101

    Article  PubMed  CAS  Google Scholar 

  21. Derényi I, Koster G, Van Duijn MM, Czövek A, Dogterom M, Prost J (2007) Membrane nanotubes. In: Controlled nanoscale motion. Springer, Berlin, pp 141–159

    Chapter  Google Scholar 

  22. Dommersnes PG, Orwar O, Brochard-Wyart F, Joanny JF (2005) Marangoni transport in lipid nanotubes. Europhys Lett 70(2):271

    Article  CAS  Google Scholar 

  23. Faini M, Prinz S, Beck R, Schorb M, Riches JD, Bacia K, Brügger B, Wieland FT, Briggs JAG (2012) The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science 336(6087):1451–1454

    Article  CAS  PubMed  Google Scholar 

  24. Faini M, Beck R, Wieland FT, Briggs JAG (2013) Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol 23(6):279–288

    Article  CAS  PubMed  Google Scholar 

  25. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155(2):193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feiguin F, Ferreira A, Kosik KS, Caceres A (1994) Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J Cell Biol 127(4):1021–1039

    Article  CAS  PubMed  Google Scholar 

  27. Finkelstein A, Zimmerberg J, Cohen FS (1986) Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis. Annu Rev Physiol 48(1):163–174

    Article  CAS  PubMed  Google Scholar 

  28. Foret L (2014) Shape and energy of a membrane bud induced by protein coats or viral protein assembly. Eur Phys J E 37(5):1–13

    Article  CAS  Google Scholar 

  29. Foret L, Sens P (2008) Kinetic regulation of coated vesicle secretion. Proc Natl Acad Sci 105(39):14763–14768

    Article  PubMed  PubMed Central  Google Scholar 

  30. Foret L, Dawson JE, Villaseñor R, Collinet C, Deutsch A, Brusch L, Zerial M, Kalaidzidis Y, Jülicher F (2012) A general theoretical framework to infer endosomal network dynamics from quantitative image analysis. Curr Biol 22(15):1381–1390

    Article  CAS  PubMed  Google Scholar 

  31. Fournier JB (1996) Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys Rev Lett 76(23):4436

    Article  CAS  PubMed  Google Scholar 

  32. Frank JR, Kardar M (2008) Defects in nematic membranes can buckle into pseudospheres. Phys Rev E 77(4):041705

    Article  CAS  Google Scholar 

  33. Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman EH, De Camilli P, Unger VM (2008) Structural basis of membrane invagination by f-bar domains. Cell 132(5):807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frost A, Unger VM, De Camilli P (2009) The bar domain superfamily: membrane-molding macromolecules. Cell 137(2):191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP (2011) Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc Natl Acad Sci 108(35):14467–14472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gauthier NC, Masters TA, Sheetz MP (2012) Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22(10):527–535

    Article  CAS  PubMed  Google Scholar 

  37. Glick BS, Nakano A (2009) Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grafmüller A, Shillcock J, Lipowsky R (2007) Pathway of membrane fusion with two tension-dependent energy barriers. Phys Rev Lett 98(21):218101

    Article  PubMed  CAS  Google Scholar 

  39. Grafmüller A, Shillcock J, Lipowsky R (2009) The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. Biophys J 96(7):2658–2675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gürkan C, Stagg SM, LaPointe P, Balch WE (2006) The COPII cage: unifying principles of vesicle coat assembly. Nat Rev Mol Cell Biol 7(10):727–738

    Article  PubMed  CAS  Google Scholar 

  41. Hanson PI, Roth R, Lin Y, Heuser JE (2008) Plasma membrane deformation by circular arrays of ESCRT-iii protein filaments. J Cell Biol 180(2):389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heinrich V, Božič B, Svetina S, Žekš B (1999) Vesicle deformation by an axial load: from elongated shapes to tethered vesicles. Biophys J 76(4):2056–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hochmuth RM, Wiles HC, Evans EA, McCown JT (1982) Extensional flow of erythrocyte membrane from cell body to elastic tether. II. experiment. Biophys J 39(1):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsu VW, Lee SY, Yang J-S (2009) The evolving understanding of COPI vesicle formation. Nat Rev Mol Cell Biol 10(5):360–364

    Article  CAS  PubMed  Google Scholar 

  45. Hu J, Shibata Y, Voss C, Shemesh T, Li Z, Coughlin M, Kozlov MM, Rapoport TA, Prinz WA (2008) Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319(5867):1247–1250

    Article  CAS  PubMed  Google Scholar 

  46. Hurley JH, Boura E, Carlson L-A, Różycki B (2010) Membrane budding. Cell 143(6):875–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jackson LP (2014) Structure and mechanism of COPI vesicle biogenesis. Curr Opin Cell Biol 29:67–73

    Article  CAS  PubMed  Google Scholar 

  48. Jin AJ, Prasad K, Smith PD, Lafer EM, Nossal R (2006) Measuring the elasticity of clathrin-coated vesicles via atomic force microscopy. Biophys J 90(9):3333–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jülicher F, Seifert U (1994) Shape equations for axisymmetric vesicles: a clarification. Phys Rev E 49(5):4728

    Article  Google Scholar 

  50. Kirchhausen T (2009) Imaging endocytic clathrin structures in living cells. Trends Cell Biol 19(11):596–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1(3):187–198

    Article  CAS  PubMed  Google Scholar 

  52. Kirchhausen T (2012) Bending membranes. Nat Cell Biol 14(9):906–908

    Article  CAS  PubMed  Google Scholar 

  53. Koster G, VanDuijn M, Hofs B, Dogterom M (2003) Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc Natl Acad Sci 100(26):15583–15588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kozlov MM, Campelo F, Liska N, Chernomordik LV, Marrink SJ, McMahon HT (2014) Mechanisms shaping cell membranes. Curr Opin Cell Biol 29:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kozlovsky Y, Kozlov MM (2002) Stalk model of membrane fusion: solution of energy crisis. Biophys J 82(2):882–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kralj-Iglič V, Heinrich V, Svetina S, Žekš B (1999) Free energy of closed membrane with anisotropic inclusions. Eur Phys J B 10(1):5–8

    Article  Google Scholar 

  57. Krauss M, Jia J-Y, Roux A, Beck R, Wieland FT, De Camilli P, Haucke P (2008) Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J Biol Chem 283(41):27717–27723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leduc C, Campàs O, Zeldovich KB, Roux A, Jolimaitre P, Bourel-Bonnet L, Goud B, Joanny J-F, Bassereau P, Prost J (2004) Cooperative extraction of membrane nanotubes by molecular motors. Proc Natl Acad Sci USA 101(49):17096–17101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee JY, Schick M (2007) Dependence of the energies of fusion on the intermembrane separation: optimal and constrained. J Chem Phys 127(7):075102

    Article  CAS  PubMed  Google Scholar 

  60. Lee MCS, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R (2005) Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122(4):605–617

    Article  CAS  PubMed  Google Scholar 

  61. Leibler S (1986) Curvature instability in membranes. J Phys 47(3):507–516

    Article  CAS  Google Scholar 

  62. Leibler S, Andelman D (1987) Ordered and curved meso-structures in membranes and amphiphilic films. J Phys 48(11):2013–2018

    Article  CAS  Google Scholar 

  63. Lipowsky R (2013) Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss 161:305–331

    Article  CAS  PubMed  Google Scholar 

  64. Manneville J-B, Casella J-F, Ambroggio E, Gounon P, Bertherat J, Bassereau P, Cartaud J, Antonny B, Goud B (2008) COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proc Natl Acad Sci 105(44):16946–16951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Markvoort AJ, Marrink SJ (2011) Lipid acrobatics in the membrane fusion arena. Curr Top Membr 68:259–294

    Article  CAS  PubMed  Google Scholar 

  66. Marsh BJ, Volkmann N, McIntosh JR, Howell KE (2004) Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 101(15):5565–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7(5):373–378

    Article  CAS  PubMed  Google Scholar 

  68. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533

    Article  CAS  PubMed  Google Scholar 

  69. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596

    Article  CAS  PubMed  Google Scholar 

  70. McMahon HT, Mills IG (2004) COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr Opin Cell Biol 16(4):379–391

    Article  CAS  PubMed  Google Scholar 

  71. McMahon HT, Kozlov MM, Martens S (2010) Membrane curvature in synaptic vesicle fusion and beyond. Cell 140(5):601–605

    Article  CAS  PubMed  Google Scholar 

  72. Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179(2):79–102

    Article  CAS  PubMed  Google Scholar 

  73. Noguchi H (2016) Membrane remodeling from n-bar domain interactions: insights from multi-scale simulation. Sci Rep 6:20935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin bar structure. Science 303(5657):495–499

    Article  CAS  PubMed  Google Scholar 

  75. Polishchuk RS, Capestrano M, Polishchuk EV (2009) Shaping tubular carriers for intracellular membrane transport. FEBS Lett 583(23):3847–3856

    Article  CAS  PubMed  Google Scholar 

  76. Powers TR, Huber G, Goldstein RE (2002) Fluid-membrane tethers: minimal surfaces and elastic boundary layers. Phys Rev E 65(4):041901

    Article  CAS  Google Scholar 

  77. Ramakrishnan N, Sunil Kumar PB, Ipsen JH (2013) Membrane-mediated aggregation of curvature-inducing nematogens and membrane tubulation. Biophys J 104(5):1018–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77(4):1992–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Raucher D, Sheetz MP (1999) Membrane expansion increases endocytosis rate during mitosis. J Cell Biol 144(3):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749

    Article  CAS  PubMed  Google Scholar 

  81. Risselada HJ, Grubmüller H (2012) How snare molecules mediate membrane fusion: recent insights from molecular simulations. Curr Opin Struct Biol 22(2):187–196

    Article  CAS  PubMed  Google Scholar 

  82. Risselada HJ, Kutzner C, Grubmüller H (2011) Caught in the act: visualization of snare-mediated fusion events in molecular detail. ChemBioChem 12(7):1049–1055

    Article  CAS  PubMed  Google Scholar 

  83. Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci 99(8):5394–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Roux A, Koster G, Lenz M, Sorre B, Manneville J-B, Nassoy P, Bassereau P (2010) Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci 107(9):4141–4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Safran SA (1994) Statistical thermodynamics of surfaces, interfaces, and membranes. Addison-Wesley, Reading

    Google Scholar 

  86. Saleem M, Morlot S, Hohendahl A, Manzi J, Lenz M, Roux A (2015) A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nat Commun 6(6249)

    Google Scholar 

  87. Schick M (2011) Membrane fusion: the emergence of a new paradigm. J Stat Phys 142(6):1317–1323

    Article  Google Scholar 

  88. Sciaky N, Presley J, Smith C, Zaal KJM, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of Brefeldin A visualized in living cells. J Cell Biol 139(5):1137–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46(1):13–137

    Article  CAS  Google Scholar 

  90. Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44(2):1182

    Article  CAS  PubMed  Google Scholar 

  91. Sens P, Turner MS (2006) Budded membrane microdomains as tension regulators. Phys Rev E 73:031918

    Article  CAS  Google Scholar 

  92. Shaklee PM, Idema T, Koster G, Storm C, Schmidt T, Dogterom M (2008) Bidirectional membrane tube dynamics driven by nonprocessive motors. Proc Natl Acad Sci 105(23):7993–7997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shen H, Pirruccello M, De Camilli P (2012) Snapshot: membrane curvature sensors and generators. Cell 150(6):1300–1300

    Article  PubMed  CAS  Google Scholar 

  94. Shillcock JC, Lipowsky R (2005) Tension-induced fusion of bilayer membranes and vesicles. Nat Mater 4(3):225–228

    Article  CAS  PubMed  Google Scholar 

  95. Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L et al (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3):402–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smirnova YG, Marrink S-J, Lipowsky R, Knecht V (2010) Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. J Am Chem Soc 132(19):6710–6718

    Article  CAS  PubMed  Google Scholar 

  97. Solon J, Pécréaux J, Girard P, Fauré M-C, Prost J, Bassereau P (2006) Negative tension induced by lipid uptake. Phys Rev Lett 97(9):098103

    Article  PubMed  CAS  Google Scholar 

  98. Sorre B, Callan-Jones A, Manzi J, Goud B, Prost J, Bassereau P, Roux A (2012) Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc Natl Acad Sci 109(1):173–178

    Article  CAS  PubMed  Google Scholar 

  99. Stachowiak JC, Hayden CC, Sasaki DY (2010) Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc Natl Acad Sci 107(17):7781–7786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY, Sherman MB, Geissler PL, Fletcher DA, Hayden CC (2012) Membrane bending by protein–protein crowding. Nat Cell Biol 14(9):944–949

    Article  CAS  PubMed  Google Scholar 

  101. Stachowiak JC, Brodsky FM, Miller EA (2013) A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat Cell Biol 15(9):1019–1027

    Article  CAS  PubMed  Google Scholar 

  102. Stagg SM, LaPointe P, Razvi A, Gürkan C, Potter CS, Carragher B, Balch WE (2008) Structural basis for cargo regulation of COPII coat assembly. Cell 134(3):474–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Staykova M, Holmes DP, Read C, Stone HA (2011) Mechanics of surface area regulation in cells examined with confined lipid membranes. Proc Natl Acad Sci 108(22):9084–9088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stevens MJ, Hoh JH, Woolf TB (2003) Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails. Phys Rev Lett 91(18):188102

    Article  PubMed  CAS  Google Scholar 

  105. Takei K, Slepnev VI, Haucke V, De Camilli P (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1(1):33–39

    Article  CAS  PubMed  Google Scholar 

  106. Takizawa PA, Yucel JK, Veit B, John Faulkner D, Deerinck T, Soto G, Ellisman M, Malhotra V (1993) Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. Cell 73(6):1079–1090

    Article  CAS  PubMed  Google Scholar 

  107. Thiam AR, Pincet F (2015) The energy of COPI for budding membranes. PLoS One 10(7):e0133757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Thiam AR, Antonny B, Wang J, Delacotte J, Wilfling F, Walther TC, Beck R, Rothman JE, Pincet F (2013) Copi buds 60-nm lipid droplets from reconstituted water–phospholipid–triacylglyceride interfaces, suggesting a tension clamp function. Proc Natl Acad Sci 110(33):13244–13249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Thiam AR, Farese RV Jr, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14(12):775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M et al (2004) Secretory traffic triggers the formation of tubular continuities across golgi sub-compartments. Nat Cell Biol 6(11):1071–1081

    Article  CAS  PubMed  Google Scholar 

  111. Tsafrir I, Sagi D, Arzi T, Guedeau-Boudeville M-A, Frette V, Kandel D, Stavans J (2001) Pearling instabilities of membrane tubes with anchored polymers. Phys Rev Lett 86(6):1138

    Article  CAS  PubMed  Google Scholar 

  112. Tsafrir I, Caspi Y, Guedeau-Boudeville M-A, Arzi T, Stavans J (2003) Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91(13):138102

    Article  PubMed  CAS  Google Scholar 

  113. Upadhyaya A, Sheetz MP (2004) Tension in tubulovesicular networks of golgi and endoplasmic reticulum membranes. Biophys J 86(5):2923–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vale RD, Hotani H (1988) Formation of membrane networks in vitro by Kinesin-driven microtubule movement. J Cell Biol 107(6):2233–2241

    Article  CAS  PubMed  Google Scholar 

  115. Walani N, Torres J, Agrawal A (2014) Anisotropic spontaneous curvatures in lipid membranes. Phys Rev E 89(6):062715

    Article  CAS  Google Scholar 

  116. Walani N, Torres J, Agrawal A (2015) Endocytic proteins drive vesicle growth via instability in high membrane tension environment. Proc Natl Acad Sci 112(12):E1423–E1432

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Waterman-Storer CM, Salmon ED (1998) Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr Biol 8(14):798–807

    Article  CAS  PubMed  Google Scholar 

  118. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92(6):759–772

    Article  CAS  PubMed  Google Scholar 

  119. Wilfling F, Thiam AR, Olarte M-J, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV et al (2014) Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 3:e01607

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yamada A, Mamane A, Lee-Tin-Wah J, Di Cicco A, Prévost C, Lévy D, Joanny J-F, Coudrier E, Bassereau P (2014) Catch-bond behaviour facilitates membrane tubulation by non-processive myosin 1b. Nat Commun 5:3624

    Article  PubMed  CAS  Google Scholar 

  121. Yang J-S, Valente C, Polishchuk RS, Turacchio G, Layre E, Moody DB, Leslie CC, Gelb MH, Brown WJ, Corda D et al (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol 13(8):996–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R (2012) COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14(1):20–28

    Article  CAS  Google Scholar 

  123. Zanetti G, Prinz S, Daum S, Meister A, Schekman R, Bacia K, Briggs JAG (2013) The structure of the COPII transport-vesicle coat assembled on membranes. Elife 2:e00951

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhong-Can O-Y, Helfrich W (1989) Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A 39(10):5280

    Article  CAS  Google Scholar 

  125. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Foret .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Shape Equations for Axisymmetric Membrane

The shape of a membrane with cylindrical symmetry can be characterized by the functions r(s), z(s), and ψ(s), where s is the arc length along the shape contour in a plane at a fixed azimuthal angle. r and z are the usual cylindrical coordinates and ψ is the angle between the radial and the tangent vectors, see Fig. 2.

In the most general case in which the membrane undergoes a pressure difference between each side and a force pulling along the z-axis at the contour boundaries, the shape of the membrane minimizes the free energy,

$$\displaystyle \begin{aligned} {\mathcal{G}}={\mathcal{F}}_{\mathrm{m}} - pV - fL \ , {} \end{aligned} $$
(48)

The second term is the energy cost associated with the volume change with \(V=\pi \int _0^{s_1}r^2\sin \psi ds\) the volume enclosed by the membrane and p the pressure difference across the membrane. The last term is included when \(L=z(0)-z(s_1)=\int _0^{s_1}\sin \psi ds\) is fixed; f is then the force exerted by the membrane at s = 0 and s = s 1 in the z direction.

In order to minimize \({\mathcal {G}}\) with respect to r(s) and ψ(s) accounting for the constrain (2), one has to introduce a Lagrange multiplier γ(s) and minimize the functional,

$$\displaystyle \begin{aligned} \begin{array}{rcl} S[r(s),\psi(s)]=\frac{\mathcal{G}}{2\pi\kappa}+\int_0^{s_1} \gamma(s)(\dot r-\cos\psi)ds=\int_0^{s_1}{\mathcal{L}}(\psi,\dot\psi,r,\dot r)ds \end{array} \end{aligned} $$
(49)

with,

$$\displaystyle \begin{aligned} {\mathcal{L}}=\frac{1}{2}\left(\dot\psi +\frac{\sin\psi}{r}-C_0\right)^2r+\frac{\sigma}{\kappa} r- \frac{p}{2\kappa}r^2\sin\psi-\frac{f}{2\pi\kappa}\sin\psi+\gamma (\dot r-\cos\psi) \end{aligned} $$
(50)

The condition δS = 0 leads to the Euler–Lagrange equations \(\frac {\partial {\mathcal {L}}}{\partial r}-\frac {d}{ds}\frac {\partial {\mathcal {L}}}{\partial \dot r}=0\) and \(\frac {\partial {\mathcal {L}}}{\partial \psi }-\frac {d}{ds}\frac {\partial {\mathcal {L}}}{\partial \dot \psi }=0\),

$$\displaystyle \begin{aligned} \begin{array}{rcl} \ddot\psi &\displaystyle =&\displaystyle - \frac{\dot \psi\cos\psi}{r} +\frac{\cos\psi\sin\psi}{r^2}-\frac{p}{2\kappa}r\cos\psi + \frac{\gamma\sin\psi}{r}-\frac{f}{2\pi\kappa}\frac{\cos\psi}{r}\ , \\ \dot\gamma&\displaystyle =&\displaystyle \frac{1}{2}\left(\dot\psi - C_0\right)^2-\frac{1}{2}\frac{\sin^2\psi}{r^2}+\frac{\sigma}{\kappa}-\frac{p}{\kappa}r\sin\psi\ , {} \end{array} \end{aligned} $$
(51)

and to the boundary conditions at s = 0 and s = s 1,

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \psi~{\mathrm{fixed}}~~{\mathrm{or}}~~\frac{\partial {\mathcal{L}}}{\partial \dot \psi}=\dot\psi+\frac{\sin\psi}{r}-C_0=0\ ,\\ &\displaystyle &\displaystyle r~{\mathrm{fixed}}~~{\mathrm{or}}~~\frac{\partial {\mathcal{L}}}{\partial \dot r}=\gamma=0 . {} \end{array} \end{aligned} $$
(52)

Equation (51) together with Eq. (2) forms a close set of differential equations of 4th order complemented by four boundary conditions (52).

In the usual case where the contour length s 1 is not fixed, then \(H=\dot r\partial _ {\dot r}{\mathcal {L}}+\dot \psi \partial _ {\dot \psi }{\mathcal {L}}-{\mathcal {L}}=0\), which gives,

$$\displaystyle \begin{aligned} \begin{array}{rcl} \frac{r\dot\psi^2}{2}- \frac{r}{2}\left(\frac{\sin\psi}{r} - C_0\right)^2-\frac{\sigma}{\kappa} r +\frac{p}{2\kappa}r^2\sin\psi+\gamma\cos\psi+\frac{f}{2\pi\kappa}\sin\psi=0\ .\qquad \end{array} \end{aligned} $$
(53)

This equation can be combined with (51) to eliminate γ and obtain a lowest order equation in ψ and r, Eq. (4).

Appendix 2: Model for Dynamical Cluster of Kinesin at Tubule Tip

The force f required to pull a tubule is usually larger than the stall force f s ∼ 10 pN of a single motor. Several motors, localized at the tip of the tubule, then work cooperatively to extract a tube [53, 58]. Tubule formation then relies on two conditions: (1) the formation of a stable cluster of N motors at the tip, and (2) the load on each motor (fN assuming that the force created by the membrane is equally distributed among the motors) should be smaller than the stall force. Let’s consider the first condition. A cluster of motors at the tubule tip is sustained by an influx J b of motors moving along the tube, and looses motors that unbind the microtubule at a rate dependent of their load, \(k_{\mathrm {u}}\exp \left (\frac {fa}{Nk_{\mathrm {B}}T}\right )\), where k u is the unbinding rate at zero load and a is the typical distance of the motor–microtubule interaction. The influx J b depends on the density of motors on the membrane, and kinetic parameters such as the motor velocity, the binding and unbinding rates [53, 58]. The flux balance,

$$\displaystyle \begin{aligned} k_{\mathrm{u}}N\exp\left(\frac{fa}{Nk_{\mathrm{B}}T}\right)=J_{\mathrm{b}}\ , \end{aligned} $$
(54)

determines N, the number of motors in the cluster. A stable cluster can exist only if \(\frac {J_{\mathrm {b}}k_{\mathrm {B}}T}{k_{\mathrm {u}}}fa>e\) where e ≃ 2.71 is the base of natural logarithm. In this case, N is in the range \(\frac {J_{\mathrm {b}}}{k_{\mathrm {u}}}<N<\frac {J_{\mathrm {b}}}{k_{\mathrm {u}}}e\). Then accounting for the second condition, fN < f s, tubule extraction by the collective action of molecular motors is possible if the force f (28) exerted by the membrane is lower than a critical value,

$$\displaystyle \begin{aligned} f<f_c~~~~{\mathrm{with}}~,~~~~f_c=\left\{ \begin{array}{lll} \frac{k_{\mathrm{B}}T}{a}\frac{J_{\mathrm{b}}}{k_{\mathrm{u}}}\frac{1}{e} &{\mathrm{if}} & f_{\mathrm{s}}a>k_{\mathrm{B}}T\\ f_{\mathrm{s}}\frac{J_{\mathrm{b}}}{k_{\mathrm{u}}}\exp\left(-\frac{f_{\mathrm{s}}a}{k_{\mathrm{B}}T}\right) &{\mathrm{if }}& f_{\mathrm{s}}a<k_{\mathrm{B}}T \end{array} \right. \end{aligned} $$
(55)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foret, L. (2018). Mechanosensitivity of Membrane Budding and Trafficking. In: Bassereau, P., Sens, P. (eds) Physics of Biological Membranes. Springer, Cham. https://doi.org/10.1007/978-3-030-00630-3_15

Download citation

Publish with us

Policies and ethics