The Phylogeny of the Family Bromeliaceae

  • Neha Pandey
  • Ray MingEmail author
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 22)


Bromeliaceae is a morphologically and ecologically diverse family of monocot flowering plant originating in the New World. Traditionally, the family has been divided into three subfamilies; however, with recent molecular phylogenetic evidence, Bromeliaceae is organized into eight subfamilies with 58 genera and 3400 species. The evolutionary history of Bromeliaceae indicates that the family arose in the Guayana Shield roughly 100 million years ago (Mya) with the extant subfamilies beginning to diverge only about 19 Mya and distributed to other parts of tropical and subtropical America and reached tropical Africa. The Bromeliaceae family is associated with epiphytism, the tank habit, leaf trichomes, avian pollinators, and CAM (Crassulacean acid metabolism) photosynthesis. The CAM photosynthesis was possessed by succulent, spiny terrestrial taxa and by the epiphytic forms. This chapter is a classical revisionary work of the Bromeliaceae phylogeny based on morphological and molecular evidence and explores its systematic position in the modern taxa.


Bromeliaceae Carbon isotope ratio Crassulacean acid metabolism Phylogeny Subfamily 


  1. Ahmad I, Chwee CP (2007) An overview of the world production and marketing of tropical and subtropical fruits editors. International Workshop on Tropical and Subtropical Fruits, vol. 787. p 47–58Google Scholar
  2. Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Benzing DH, Renfrow A (1980) The nutritional dynamics of Tillandsia circinnata in southern Florida and the origin of the “air plant” strategy. Bot Gaz 141:165–172CrossRefGoogle Scholar
  4. Brown GK, Leme EMC (2000) Cladistic analysis in the nidularioid complex. Nidularium - Bromeliads of the Atlantic Forest pp 240–247Google Scholar
  5. Butcher D, Gouda E (2014) Most Ananas are cultivars. Newsletter of the Pineapple Working Group. Int Soc Hortic Sci 21:9–11Google Scholar
  6. Chase MW, Duvall MR, Hills HG, Conran JG, Cox AV, Eguiarte LE, Hartwell J, Fay MF, Caddick LR, Cameron KM (1995) Molecular phylogenetics of Lilianae. In: Monocotyledons: systematics and evolution, vol 1. Royal Botanic Gardens, Kew, London, pp 109–137Google Scholar
  7. Chase MW, Fay MF, Devey DS, Maurin O, Ransted N, Davies TJ, Pillon Y, Petersen G, Seberg O, Tamura MN (2006) Multigene analyses of monocot relationships: a summary. Aliso 22:63–75CrossRefGoogle Scholar
  8. Clark WD, Gaut BS, Duvall MR, Clegg MT (1993) Phylogenetic relationships of the Bromeliiflorae-Commeliniflorae Zingiberiflorae complex of monocots based on rbcL sequence comparisons. Ann Mo Bot Gard 80:987–998CrossRefGoogle Scholar
  9. Crayn DM, Terry RG, Smith JAC, Winter K (2000) Molecular systematic investigations in Pitcairnioideae (Bromeliaceae) as a basis for understanding the evolution of crassulacean acid metabolism (CAM). Monocots: systematics and evolution. CSIRO, Collingwood, pp 569–579Google Scholar
  10. Crayn DM, Winter K, Schulte K, Smith JAC (2015) Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species. Bot J Linn Soc 178:169–221CrossRefGoogle Scholar
  11. Crayn DM, Winter K, Smith JAC (2004) Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc Natl Acad Sci U S A 101:3703–3708CrossRefGoogle Scholar
  12. Duvall MR, Clegg MT, Chase MW, Clark WD, Kress WJ, Hills HG, Eguiarte LE, Smith JF, Gaut BS, Zimmer EA (1993) Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. Ann Mo Bot Gard 80:607–619CrossRefGoogle Scholar
  13. Gilmartin AJ, Brown GK (1987) Bromeliales, related monocots, and resolution of relationships among Bromeliaceae subfamilies. Syst Bot 12:493–500CrossRefGoogle Scholar
  14. Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895CrossRefGoogle Scholar
  15. Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC (2014) Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol Phylogenet Evol 71:55–78CrossRefGoogle Scholar
  16. Givnish TJ, Millam KC, Berry PE, Sytsma KJ (2007) Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23:3–26CrossRefGoogle Scholar
  17. Givnish TJ, Millam KC, Evans TM, Hall JC, Pires JC, Berry PE, Sytsma KJ (2004) Ancient vicariance or recent long distance dispersal inferences about phylogeny and South American African disjunctions in Rapateaceae and Bromeliaceae based on ndhF sequence data. Int J Plant Sci 165:S35–S54CrossRefGoogle Scholar
  18. Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Rai HS, Roalson EH, Evans TM, Hahn WJ (2005) Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. Proc R Soc Lond B Biol Sci 272:1481–1490CrossRefGoogle Scholar
  19. Givnish TJ, Sytsma KJ, Smith JF, Hahn WJ, Benzing DH, Burkhardt EM (1997) Molecular evolution and adaptive radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) atop tepuis of the Guayana Shield. In: Molecular evolution and adaptive radiation. Cambridge University Press, New York, pp 259–311Google Scholar
  20. Griffiths H, Smith JAC (1983) Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60:176–184CrossRefGoogle Scholar
  21. Horres R, Zizka G, Kahl G, Weising K (2000) Molecular phylogenetics of Bromeliaceae: evidence from trnL (UAA) intron sequences of the chloroplast genome. Plant Biol 2:306–315CrossRefGoogle Scholar
  22. Ii A (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  23. Kluge M, Ting IP (2012) Crassulacean acid metabolism: analysis of an ecological adaptation. Springer Science & Business Media, BerlinGoogle Scholar
  24. Kromer T, Kessler M, Lohaus G, Schmidt-Lebuhn AN (2008) Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biol 10:502–511CrossRefGoogle Scholar
  25. Martin CE (1994) Physiological ecology of the Bromeliaceae. Bot Rev 60:1–82CrossRefGoogle Scholar
  26. Medina E (1974) Dark CO2 fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28:677–686PubMedGoogle Scholar
  27. Medina E, Popp M, Olivares E, Janett HP, Lattge U (1993) Daily fluctuations of titratable acidity, content of organic acids (malate and citrate) and soluble sugars of varieties and wild relatives of Ananas comosus L. growing under natural tropical conditions. Plant Cell Environ 16:55–63CrossRefGoogle Scholar
  28. Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang M-L, Chen J, Biggers E (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442CrossRefGoogle Scholar
  29. Neales TF, Patterson AA, Hartney VJ (1968) Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes. Nature 219:469–472CrossRefGoogle Scholar
  30. Pittendrigh CS (1948) The bromeliad-Anopheles-malaria complex in Trinidad. I-the bromeliad flora. Evolution 2(1):58–89PubMedGoogle Scholar
  31. Richardson MK, Minelli A, Coates MI (1999) Some problems with typological thinking in evolution and development. Evol Dev 1:5–7CrossRefGoogle Scholar
  32. Schulte K, Barfuss MHJ, Zizka G (2009) Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. Mol Phylogenet Evol 51(2):327–339CrossRefGoogle Scholar
  33. Smith LB (1934) Geographical evidence on the lines of evolution in the Bromeliaceae. Bot Jahrb 66:446–468Google Scholar
  34. Smith LB (1988) New key to the genera of the Bromeliaceae. Beitr Biol Pfl 63:403–411Google Scholar
  35. Smith LB, Downs RJ (1974) Flora neotropica monograph no. 14. (Pitcairnioideae) (Bromeliaceae). Hafner Press for Flora Neotropica, New York 658p.-Illus., maps, keys.. Icones, Maps. GeogGoogle Scholar
  36. Smith LB, Downs RJ (1977) Flora neotropica monograph no. 14, part 2. Tillandsioideae (Bromeliaceae). Hafner Press for Organization for Flora Neotropica, New YorkGoogle Scholar
  37. Smith LB, Downs RJ (1979) Flora neotropica: monograph. 14. (Bromeliaceae): 3. Bromelioideae. Botanical Garden, New YorkGoogle Scholar
  38. Smith LB, Kress WJ (1990) New genera of Bromeliaceae. Phytologia 69:271–274CrossRefGoogle Scholar
  39. Smith LB, Till W (1998) Bromeliaceae. In: Flowering plants, a monocotyledons. Springer, New York, pp 74–99CrossRefGoogle Scholar
  40. Varadarajan GS, Gilmartin AJ (1988) Taxonomic realignments within the subfamily Pitcairnioideae (Bromeliaceae). Syst Bot 13:294–299CrossRefGoogle Scholar
  41. Zanella CM, Janke A, Palma-Silva C, Kaltchuk-Santos E, Pinheiro FG, Paggi GM, Soares LES, Goetze MR, Battow MV, Bered F (2012) Genetics, evolution and conservation of Bromeliaceae. Genet Mol Biol 35:1020–1026CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations