Advertisement

Genomics of Pineapple Disease-Resistance Genes

  • Xiaodan Zhang
  • Ray MingEmail author
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 22)

Abstract

Pineapple is a major tropical fruit crop with high nutritious values. It possesses crassulacean acid metabolism (CAM) photosynthesis and can survive in harsh and arid environment. But it is susceptible to various diseases, thus the quality and yield can be negatively affected. The major pineapple diseases include fusariosis, pink disease, and mealybug wilt disease. The diseases are sporadically distributed geographically, and the severity of diseases is different according to the latitude or weather. Some wild pineapples are resistant to the diseases, which may result from greater genetic diversity. Several pineapple cultivars are also resistant to certain disease and the disease resistance can be additive or quantitative. For instance, a pineapple cultivar selected from crossing between the pineapple cv. Primavera (PRI) and the cv. Smooth Cayenne (SC), “Vitória”, is resistant to fusariosis, while PRI and SC are susceptible to fusariosis. Transgenic approaches also facilitate disease resistance in pineapple by transforming polyphenol oxidase (PPO) or chitinases. Transgenic expression of PPO gene displayed increased resistance for blackheart, and transgenic plants with chitinases expressed enhanced resistance against fungal pathogen. Nucleotide-binding site (NBS) gene family is the largest class of disease-resistance (R) genes. From the draft genome of pineapple, 177 NBS resistance genes have been identified. The identification and classification of NBS genes in pineapple provide a valuable genomic resource and improve the understanding of pineapple R genes, which further facilitates the development of pineapple disease-resistant cultivars.

Keywords

Ananas comosus Chitinases Fusariosis NBS-encoding genes Transgenic resistance 

References

  1. Agrios G (2005) Plant pathology, 5th edn. Elsevier Academic Press, Burlington, MA USAGoogle Scholar
  2. Ameline-Torregrosa C, Wang B-B, O'Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146(1):5–21PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ayala A, González-Tejera E, Irizarry H (1969) Pineapple nematodes and their control. Nematodes of tropical crops Commonwealth Agricultural Bureau International, United Kingdom, pp 210–224Google Scholar
  4. Ballvora A, Ercolano MR, Weiß J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30(3):361–371PubMedCrossRefGoogle Scholar
  5. Beardsley JW (1959) On the taxonomy of pineapple mealybugs in Hawaii, with a description of a previously unnamed species (Homoptera: Pseudococcidae). Proc Hawaiian Entomol Soc 17(1):29–37Google Scholar
  6. Broglie KE, Gaynor JJ, Broglie RM (1986) Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci 83(18):6820–6824PubMedCrossRefGoogle Scholar
  7. Butt V (1980) Direct oxidases and related enzymes. In: The Biochemistry of plants: a comprehensive treatise (USA)CrossRefGoogle Scholar
  8. Cabral J, de Matos (2007) A Imperial, a new pineapple cultivar resistant to fusariosis. In: VI International Pineapple Symposium, vol 822. pp 47–51Google Scholar
  9. Cabral J, De Matos A, Da Cunha G (1992) Selection of pineapple cultivars resistant to fusariose. Int Pine Symp 334:53–58Google Scholar
  10. Cabral J, de Matos A, Junghans D, Souza F (2007) Pineapple genetic improvement in Brazil. In: VI International Pineapple Symposium, vol 822. pp 39–46Google Scholar
  11. Carter W (1933) The pineapple mealy bug, Pseudococcus brevipes, and wilt of pineapples. Phytopathology 23(3):207–242Google Scholar
  12. Carter W (1942) The geographical distribution of mealybug wilt with notes on some other insect pests of pineapple. J Econ Entomol 35(1)CrossRefGoogle Scholar
  13. Carter W (1962) The systemic phytotoxemias: mealybug wilt of pineapple. In: Insects in relation to plant disease. Wiley-VCH, New York, pp 238–265Google Scholar
  14. Carter W (1963) Mealybug wilt of pineapple; a reappraisal. Ann N Y Acad Sci 105(1):741–764Google Scholar
  15. Carter W, Collins J (1947) Resistance to mealybug wilt of pineapple with special reference to a Cayenne-queen hybrid. Phytopathology 37(5):332–348Google Scholar
  16. Cha JS, Pujol C, Ducusin A, Macion E, Hubbard C, Kado C (1997) Studies on Pantoea citrea, the causal agent of pink disease of pineapple. J Phytopathol 145(7):313–319CrossRefGoogle Scholar
  17. Cheng X, Jiang H, Zhao Y, Qian Y, Zhu S, Cheng B (2010) A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor. Genet Mol Biol 33(2):292–297PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814PubMedCrossRefGoogle Scholar
  19. Cho JJ, Hayward A, Rohrbach KG (1980) Nutritional requirements and biochemical activities of pineapple pink disease bacterial strains from Hawaii. Antonie Van Leeuwenhoek 46(2):191–204PubMedCrossRefGoogle Scholar
  20. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3(1):31–40PubMedCrossRefGoogle Scholar
  21. Collins J (1960) The pineapple, botany, utilisation, cultivation, vol 294. Leonard Hill Ltd, LondonGoogle Scholar
  22. Collins J, Carter W (1954) Wilt resistant mutations in the Cayenne variety of pineapple. Phytopathology 44(11):662–666Google Scholar
  23. Coppens diEeckenbrugge G, Lea F, VMeF D (2010) Germplasm resources of pineapple. Hortic Rev 21:133Google Scholar
  24. d' Eeckenbrugge G, Leal F, Duval M (1997) Germplasm resources of pineapple. In: Horticultural reviews, vol 21Google Scholar
  25. De Matos A, Mourichon X, Pinon A (1992) Occurrence of Fusarium moniliforme var. subglutinans on pineapple in Bolivia. In: Fruits (France)Google Scholar
  26. DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7(12):1243–1249PubMedPubMedCentralCrossRefGoogle Scholar
  27. Duval M, Coppens d'Eeckenbrugge G, Ferreira F, Bianchetti L, Cabral J (1995) First results from joint EMBRAPA-CIRAD Ananas germplasm collecting in Brazil and French Guyana. In: II International Pineapple Symposium, vol 425. pp 137–144Google Scholar
  28. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. American Phytopathological Society (APS Press)Google Scholar
  29. Ferris GF (1950) Atlas of scale insects of North America. Stanford Univ Press Series, vol 5Google Scholar
  30. Firoozabady E, Heckert M, Gutterson N (2006) Transformation and regeneration of pineapple. Plant Cell Tissue Organ Cult 84(1):1–16CrossRefGoogle Scholar
  31. Gambley C, Steele V, Geering A, Thomas J (2008) The genetic diversity of ampeloviruses in Australian pineapples and their association with mealybug wilt disease. Australas Plant Pathol 37(2):95–105CrossRefGoogle Scholar
  32. German TL, Ullman DE, Gunashinghe U (1992) Mealybug wilt of pineapple. In: Advances in disease vector research. Springer, New York, pp 241–259CrossRefGoogle Scholar
  33. Graham M, Ko L, Hardy V, Robinson S, Sawyer B, O'Hare T, Jobin M, Dahler J, Underhill S, Smith M (2000) The development of blackheart resistant pineapples through genetic engineering. Acta Hortic 529:133–138CrossRefGoogle Scholar
  34. Green J, Nelson S (2015) Heart and root rots of pineapple. In: Plant diseaseGoogle Scholar
  35. Guo Y-L, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157(2):757–769PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39(1):285–312PubMedCrossRefGoogle Scholar
  37. Gary C Jahn, John W Beardsley, Héctor González-Hernández 2003 A review of the association of ants with mealybug wilt disease of pineapple. Hawaiian Entomological SocietyGoogle Scholar
  38. Jayaraj J, Punja Z (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26(9):1539–1546PubMedCrossRefGoogle Scholar
  39. Jia RZ, Ming R, Zhu YJ (2013) Genome-wide analysis of nucleotide-binding site (NBS) disease resistance (R) genes in sacred Lotus (Nelumbo nucifera Gaertn.) reveals their transition role during early evolution of land plants. Trop Plant Biol 6(2–3):98–116CrossRefGoogle Scholar
  40. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329PubMedCrossRefGoogle Scholar
  41. Judelson HS (1997) The genetics and biology of phytophthora infestans: modern approaches to a historical challenge. Fungal Genet Biol 22(2):65–76PubMedCrossRefGoogle Scholar
  42. Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJ, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JD (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13(1):75PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kado CI (2003) Pink disease of pineapple. The American Phytopathological Society, Saint PaulCrossRefGoogle Scholar
  44. Kamoun S (2001) Nonhost resistance to Phytophthora: novel prospects for a classical problem. Curr Opin Plant Biol 4(4):295–300PubMedCrossRefGoogle Scholar
  45. Kilian A, Sanewski G, Ko L (2014)The application of DArTseq technology to pineapple. In: XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): IV 1111. pp 181–188Google Scholar
  46. Kimati H, Tokeshi H (1964) Nota sobre a ocorrencia de Fusarium sp. causando resinose fungica em abacaxi. Revista de Agricultura 39(3):131–133Google Scholar
  47. Klemmer HW, Nakano RY (1964) Distribution and pathogenicity of Phytophthora and Pythium in pineapple soils of Hawaii. Plant Dis Rep 48:848–852Google Scholar
  48. Ko H, Campbell P, Jobin-Décor M, Eccleston K, Graham M, Smith M (2006) The introduction of transgenes to control blackheart in pineapple (Ananas comosus L.) cv. Smooth Cayenne by microprojectile bombardment. Euphytica 150(3):387–395CrossRefGoogle Scholar
  49. Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66(6):619–636PubMedCrossRefGoogle Scholar
  50. Kontaxis D, Hayward A (1978) The pathogen and symptomatology of pink disease of pineapple fruit in the Philippines. Plant Dis Reporter 62(5):446–450Google Scholar
  51. Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  52. Laville E (1980) Fusarium disease of pineapple in Brazil. I. Review of current knowledge. Fruits 35(2):101–113Google Scholar
  53. Lim W (1985) Diseases and disorders of pineapples in peninsular Malaysia. MARDI Report 97Google Scholar
  54. Liu Z-W, Li H-P, Cheng W, Yang P, Zhang J-B, Gong A-D, Feng Y-N, Fernando WD, Liao Y-C (2012) Enhanced overall resistance to Fusarium seedling blight and Fusarium head blight in transgenic wheat by co-expression of anti-fungal peptides. Eur J Plant Pathol 134(4):721–732CrossRefGoogle Scholar
  55. Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS One 7(4):e34775PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lozano R, Hamblin MT, Prochnik S, Jannink J-L (2015) Identification and distribution of the NBS-LRR gene family in the cassava genome. BMC Genomics 16(1):360PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lyon H (1915) A survey of the pineapple problems. Hawaii Plant Records 13:125–139Google Scholar
  58. Marin-Cevada V, Fuentes-Ramirez LE (2016) Pink disease, a review of an asymptomatic bacterial disease in pineapple. Rev Bras Frutic 38 (3)Google Scholar
  59. Marín-Cevada V, Vargas V, Juarez M, López V, Zagada G, Hernández S, Cruz A, Caballero-Mellado J, López-Reyes L, Jiménez-Salgado T (2006) Presence of Pantoea citrea, causal agent of pink disease, in pineapple fields in Mexico. Plant Pathol 55(2):294–294CrossRefGoogle Scholar
  60. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54(1):23–61PubMedCrossRefGoogle Scholar
  61. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell 15(4):809–834PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang M-L, Chen J, Biggers E (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47(12):1435–1442PubMedPubMedCentralCrossRefGoogle Scholar
  63. Monosi B, Wisser R, Pennill L, Hulbert S (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109(7):1434–1447PubMedCrossRefGoogle Scholar
  64. Nookaraju A, Agrawal DC (2012) Enhanced tolerance of transgenic grapevines expressing chitinase and β-1, 3-glucanase genes to downy mildew. Plant Cell Tissue Organ Cult 111(1):15–28CrossRefGoogle Scholar
  65. Pak J-H, Chung E-S, Shin S-H, Jeon E-H, Kim M-J, Lee H-Y, Jeung J-U, Hyung N-I, Lee J-H, Chung Y-S (2009) Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV. Plant Biotechnol Reports 3(2):147–155CrossRefGoogle Scholar
  66. Paterson A, Bowers J, Chapman B (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101(26):9903–9908PubMedPubMedCentralCrossRefGoogle Scholar
  67. Paull RE, Rohrbach KG (1985) Symptom development of chilling injury in pineapple fruit. J Am Soc Hortic Sci 110(1):100–105Google Scholar
  68. Petty G, Manicom B (1995) Control of the big-headed ant, Pheidole megacephala, in pineapple plantations with the proprietary bait. Amdro Fruits 50(5):343–346Google Scholar
  69. Porter BW, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Gen Genomics 281(6):609–626CrossRefGoogle Scholar
  70. Reinhardt D, Cabral J, de Matos A, Junghans D (2010), 'BRS Ajubá' a new pineapple cultivar resistant to fusariosis and adapted to subtropical conditions. In: VI International Symposium on Banana: XXVIII International Horticultural Congress on Science and Horticulture for People, vol 928. pp 75–79Google Scholar
  71. Rohrbach KG (1984) Pineapple diseases and pests and their potential for spread. In: Exotic plant quarantine pests & procedures for introduction of plant materials/edited by KG SinghGoogle Scholar
  72. Rohrbach K, Donald S (2003) Diseases of pineapple. In: Diseases of tropical fruit crops. CABI, CambridgeGoogle Scholar
  73. Rohrbach KG, Johnson MW (2002) 9 Pests, diseases and weeds. In: The pineapple: botany, production, and uses, p 203Google Scholar
  74. Rohrbach KG, Pfeiffer JB (1976) The interaction of four bacteria causing pink disease of pineapple with several pineapple cultivars. Phytopathology 66(4):396–399CrossRefGoogle Scholar
  75. Rohrbach K, Schmitt D (1994) Pineapple diseases. Phytophtora heart rot and root rot. In: Compendium of tropical fruit diseases. Am Phytopathol Soc Press, St Paul, MN, pp 49–50Google Scholar
  76. Rohrbach KG, Beardsley JW, German TL, Reimer NJ, Sanford WG (1988) Mealybug wilt, mealybugs, and ants of pineapple. Plant Dis 72(7):558–565CrossRefGoogle Scholar
  77. Rohrbach KG, Christopher D, Hu J, Paull R, Sipes B, Nagai C, Moore P, McPherson M, Atkinson H (1998) Levesley A Management of a multiple goal pineapple genetic engineering program. In: III International Pineapple Symposium, vol 529. pp 111–114Google Scholar
  78. Sanewski G, Giles J (1997) Blackheart resistance in three clones of pineapple [Ananas comosus (L.) Merr.] in subtropical Queensland. Anim Prod Sci 37(4):459–461CrossRefGoogle Scholar
  79. Sether D, Hu J (2001) The impact of pineapple mealybug wilt-associated virus-1 and reduced irrigation on pineapple yield. Australas Plant Pathol 30(1):31–36CrossRefGoogle Scholar
  80. Sether D, Ullman D, Hu J (1998) Transmission of pineapple mealybug wilt-associated virus by two species of mealybug (Dysmicoccus spp.). Phytopathology 88(11):1224–1230PubMedCrossRefGoogle Scholar
  81. Shen B, Zheng Y, Chen W, Chang T, Ku H-M, Jan F-J (2009) Occurrence and molecular characterization of three pineapple Mealybug wilt-associated viruses in pineapple in Taiwan. Plant Dis 93(2):196–196CrossRefGoogle Scholar
  82. Singh S, Sastry K (1974) Wilt of pineapple-a new virus disease in India. Ind Phytopathol 27(3):298–303Google Scholar
  83. Singh A, Kirubakaran SI, Sakthivel N (2007) Heterologous expression of new antifungal chitinase from wheat. Protein Expr Purif 56(1):100–109PubMedCrossRefGoogle Scholar
  84. Sipes B, Schmitt D (1994) Evaluation of pineapple, Ananas comosus, for host-plant resistance and tolerance to Rotylenchulus reniformis and Meloidogyne javanica. Nematropica 24(2):113–121Google Scholar
  85. Smith J (1966) Review of the root rot and heart rot problem in pineapple. II. Breeding for resistance. PRI Res Rep 118:50–63Google Scholar
  86. Smith L (1983) Cause and development of blackheart in pineapples. In: Tropical AgricultureGoogle Scholar
  87. Sripaoraya S, Marchant R, Power J, Davey M (2001) Herbicide-tolerant transgenic pineapple (Ananas comosus) produced by microprojectile bombardment. Ann Bot 88(4):597–603CrossRefGoogle Scholar
  88. Steffens JC, Zabeau M (1994) Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers. Bio/Technology 12:1101CrossRefGoogle Scholar
  89. Stewart R, Sawyer B, Robinson S (2002) Blackheart development following chilling in fruit of susceptible and resistant pineapple cultivars. Anim Prod Sci 42(2):195–199CrossRefGoogle Scholar
  90. Taira T, Toma N, Ichi M, Takeuchi M, Ishihara M (2005) Tissue distribution, synthesis stage, and ethylene induction of pineapple (Ananas comosus) chitinases. Biosci Biotechnol Biochem 69(4):852–854PubMedCrossRefGoogle Scholar
  91. Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7(1):56PubMedPubMedCentralCrossRefGoogle Scholar
  92. Tang H, Bowers JE, Wang X, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci 107(1):472–477PubMedCrossRefGoogle Scholar
  93. Trusov Y, Botella JR (2006) Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.]. J Exp Bot 57(14):3953–3960PubMedPubMedCentralCrossRefGoogle Scholar
  94. Van Loon L, Van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var.‘Samsun’and ‘Samsun NN’: II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40(2):199–211CrossRefGoogle Scholar
  95. Ventura J, Zambolim L, Chaves G (1992) Integrated management system for pineapple Fusarium disease control. In: I International Pineapple Symposium, vol 334. pp 439–454Google Scholar
  96. Ventura J, Costa H, Cabral J, de Matos A (2007) 'Vitoria': new pineapple cultivar resistant to fusariosis. In: VI International Pineapple Symposium, vol 822. pp 51–56Google Scholar
  97. Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49:507–531PubMedCrossRefGoogle Scholar
  98. Winks C, Glennie J, Lanham T (1984) Progress report: pineapple breeding. Maroochy Horicult Res Station Report 1985(4):175–177Google Scholar
  99. Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, Van den Elzen P, Cornelissen B (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3(6):619–628PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yabor L, Aragón C, Hernández M, Arencibia A, Lorenzo JC (2008) Biochemical side effects of the herbicide FINALE® on bar gene-containing transgenic pineapple plantlets. Euphytica 164(2):515CrossRefGoogle Scholar
  101. Yang S, Gu T, Pan C, Feng Z, Ding J, Hang Y, Chen J-Q, Tian D (2008a) Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet 116(2):165–177PubMedCrossRefGoogle Scholar
  102. Yang S, Zhang X, Yue J-X, Tian D, Chen J-Q (2008b) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics 280(3):187–198CrossRefGoogle Scholar
  103. Zhang X, Liang P, Ming R (2016) Genome-wide identification and characterization of nucleotide-binding site (NBS) resistance genes in pineapple. Trop Plant Biol 9(3):187–199CrossRefGoogle Scholar
  104. Zhou Y, Dahler JM, Underhill SJ, Wills RB (2003a) Enzymes associated with blackheart development in pineapple fruit. Food Chem 80(4):565–572CrossRefGoogle Scholar
  105. Zhou Y, O'Hare TJ, Jobin-Decor M, Underhill SJ, Wills RB, Graham MW (2003b) Transcriptional regulation of a pineapple polyphenol oxidase gene and its relationship to blackheart. Plant Biotechnol J 1(6):463–478CrossRefGoogle Scholar
  106. Zhou T, Wang Y, Chen J-Q, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271(4):402–415CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations