Skip to main content

Genomics of Pineapple Disease-Resistance Genes

  • Chapter
  • First Online:
Genetics and Genomics of Pineapple

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 22))

  • 858 Accesses

Abstract

Pineapple is a major tropical fruit crop with high nutritious values. It possesses crassulacean acid metabolism (CAM) photosynthesis and can survive in harsh and arid environment. But it is susceptible to various diseases, thus the quality and yield can be negatively affected. The major pineapple diseases include fusariosis, pink disease, and mealybug wilt disease. The diseases are sporadically distributed geographically, and the severity of diseases is different according to the latitude or weather. Some wild pineapples are resistant to the diseases, which may result from greater genetic diversity. Several pineapple cultivars are also resistant to certain disease and the disease resistance can be additive or quantitative. For instance, a pineapple cultivar selected from crossing between the pineapple cv. Primavera (PRI) and the cv. Smooth Cayenne (SC), “Vitória”, is resistant to fusariosis, while PRI and SC are susceptible to fusariosis. Transgenic approaches also facilitate disease resistance in pineapple by transforming polyphenol oxidase (PPO) or chitinases. Transgenic expression of PPO gene displayed increased resistance for blackheart, and transgenic plants with chitinases expressed enhanced resistance against fungal pathogen. Nucleotide-binding site (NBS) gene family is the largest class of disease-resistance (R) genes. From the draft genome of pineapple, 177 NBS resistance genes have been identified. The identification and classification of NBS genes in pineapple provide a valuable genomic resource and improve the understanding of pineapple R genes, which further facilitates the development of pineapple disease-resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios G (2005) Plant pathology, 5th edn. Elsevier Academic Press, Burlington, MA USA

    Google Scholar 

  • Ameline-Torregrosa C, Wang B-B, O'Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146(1):5–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala A, González-Tejera E, Irizarry H (1969) Pineapple nematodes and their control. Nematodes of tropical crops Commonwealth Agricultural Bureau International, United Kingdom, pp 210–224

    Google Scholar 

  • Ballvora A, Ercolano MR, Weiß J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30(3):361–371

    Article  CAS  PubMed  Google Scholar 

  • Beardsley JW (1959) On the taxonomy of pineapple mealybugs in Hawaii, with a description of a previously unnamed species (Homoptera: Pseudococcidae). Proc Hawaiian Entomol Soc 17(1):29–37

    Google Scholar 

  • Broglie KE, Gaynor JJ, Broglie RM (1986) Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci 83(18):6820–6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt V (1980) Direct oxidases and related enzymes. In: The Biochemistry of plants: a comprehensive treatise (USA)

    Chapter  Google Scholar 

  • Cabral J, de Matos (2007) A Imperial, a new pineapple cultivar resistant to fusariosis. In: VI International Pineapple Symposium, vol 822. pp 47–51

    Google Scholar 

  • Cabral J, De Matos A, Da Cunha G (1992) Selection of pineapple cultivars resistant to fusariose. Int Pine Symp 334:53–58

    Google Scholar 

  • Cabral J, de Matos A, Junghans D, Souza F (2007) Pineapple genetic improvement in Brazil. In: VI International Pineapple Symposium, vol 822. pp 39–46

    Google Scholar 

  • Carter W (1933) The pineapple mealy bug, Pseudococcus brevipes, and wilt of pineapples. Phytopathology 23(3):207–242

    Google Scholar 

  • Carter W (1942) The geographical distribution of mealybug wilt with notes on some other insect pests of pineapple. J Econ Entomol 35(1)

    Article  Google Scholar 

  • Carter W (1962) The systemic phytotoxemias: mealybug wilt of pineapple. In: Insects in relation to plant disease. Wiley-VCH, New York, pp 238–265

    Google Scholar 

  • Carter W (1963) Mealybug wilt of pineapple; a reappraisal. Ann N Y Acad Sci 105(1):741–764

    Google Scholar 

  • Carter W, Collins J (1947) Resistance to mealybug wilt of pineapple with special reference to a Cayenne-queen hybrid. Phytopathology 37(5):332–348

    Google Scholar 

  • Cha JS, Pujol C, Ducusin A, Macion E, Hubbard C, Kado C (1997) Studies on Pantoea citrea, the causal agent of pink disease of pineapple. J Phytopathol 145(7):313–319

    Article  Google Scholar 

  • Cheng X, Jiang H, Zhao Y, Qian Y, Zhu S, Cheng B (2010) A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor. Genet Mol Biol 33(2):292–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814

    Article  CAS  PubMed  Google Scholar 

  • Cho JJ, Hayward A, Rohrbach KG (1980) Nutritional requirements and biochemical activities of pineapple pink disease bacterial strains from Hawaii. Antonie Van Leeuwenhoek 46(2):191–204

    Article  CAS  PubMed  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Collins J (1960) The pineapple, botany, utilisation, cultivation, vol 294. Leonard Hill Ltd, London

    Google Scholar 

  • Collins J, Carter W (1954) Wilt resistant mutations in the Cayenne variety of pineapple. Phytopathology 44(11):662–666

    Google Scholar 

  • Coppens diEeckenbrugge G, Lea F, VMeF D (2010) Germplasm resources of pineapple. Hortic Rev 21:133

    Google Scholar 

  • d' Eeckenbrugge G, Leal F, Duval M (1997) Germplasm resources of pineapple. In: Horticultural reviews, vol 21

    Google Scholar 

  • De Matos A, Mourichon X, Pinon A (1992) Occurrence of Fusarium moniliforme var. subglutinans on pineapple in Bolivia. In: Fruits (France)

    Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7(12):1243–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duval M, Coppens d'Eeckenbrugge G, Ferreira F, Bianchetti L, Cabral J (1995) First results from joint EMBRAPA-CIRAD Ananas germplasm collecting in Brazil and French Guyana. In: II International Pineapple Symposium, vol 425. pp 137–144

    Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. American Phytopathological Society (APS Press)

    Google Scholar 

  • Ferris GF (1950) Atlas of scale insects of North America. Stanford Univ Press Series, vol 5

    Google Scholar 

  • Firoozabady E, Heckert M, Gutterson N (2006) Transformation and regeneration of pineapple. Plant Cell Tissue Organ Cult 84(1):1–16

    Article  Google Scholar 

  • Gambley C, Steele V, Geering A, Thomas J (2008) The genetic diversity of ampeloviruses in Australian pineapples and their association with mealybug wilt disease. Australas Plant Pathol 37(2):95–105

    Article  CAS  Google Scholar 

  • German TL, Ullman DE, Gunashinghe U (1992) Mealybug wilt of pineapple. In: Advances in disease vector research. Springer, New York, pp 241–259

    Chapter  Google Scholar 

  • Graham M, Ko L, Hardy V, Robinson S, Sawyer B, O'Hare T, Jobin M, Dahler J, Underhill S, Smith M (2000) The development of blackheart resistant pineapples through genetic engineering. Acta Hortic 529:133–138

    Article  CAS  Google Scholar 

  • Green J, Nelson S (2015) Heart and root rots of pineapple. In: Plant disease

    Google Scholar 

  • Guo Y-L, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157(2):757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39(1):285–312

    Article  CAS  PubMed  Google Scholar 

  • Gary C Jahn, John W Beardsley, Héctor González-Hernández 2003 A review of the association of ants with mealybug wilt disease of pineapple. Hawaiian Entomological Society

    Google Scholar 

  • Jayaraj J, Punja Z (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26(9):1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Jia RZ, Ming R, Zhu YJ (2013) Genome-wide analysis of nucleotide-binding site (NBS) disease resistance (R) genes in sacred Lotus (Nelumbo nucifera Gaertn.) reveals their transition role during early evolution of land plants. Trop Plant Biol 6(2–3):98–116

    Article  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Judelson HS (1997) The genetics and biology of phytophthora infestans: modern approaches to a historical challenge. Fungal Genet Biol 22(2):65–76

    Article  CAS  PubMed  Google Scholar 

  • Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJ, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JD (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kado CI (2003) Pink disease of pineapple. The American Phytopathological Society, Saint Paul

    Book  Google Scholar 

  • Kamoun S (2001) Nonhost resistance to Phytophthora: novel prospects for a classical problem. Curr Opin Plant Biol 4(4):295–300

    Article  CAS  PubMed  Google Scholar 

  • Kilian A, Sanewski G, Ko L (2014)The application of DArTseq technology to pineapple. In: XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): IV 1111. pp 181–188

    Google Scholar 

  • Kimati H, Tokeshi H (1964) Nota sobre a ocorrencia de Fusarium sp. causando resinose fungica em abacaxi. Revista de Agricultura 39(3):131–133

    Google Scholar 

  • Klemmer HW, Nakano RY (1964) Distribution and pathogenicity of Phytophthora and Pythium in pineapple soils of Hawaii. Plant Dis Rep 48:848–852

    Google Scholar 

  • Ko H, Campbell P, Jobin-Décor M, Eccleston K, Graham M, Smith M (2006) The introduction of transgenes to control blackheart in pineapple (Ananas comosus L.) cv. Smooth Cayenne by microprojectile bombardment. Euphytica 150(3):387–395

    Article  CAS  Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66(6):619–636

    Article  CAS  PubMed  Google Scholar 

  • Kontaxis D, Hayward A (1978) The pathogen and symptomatology of pink disease of pineapple fruit in the Philippines. Plant Dis Reporter 62(5):446–450

    Google Scholar 

  • Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  CAS  Google Scholar 

  • Laville E (1980) Fusarium disease of pineapple in Brazil. I. Review of current knowledge. Fruits 35(2):101–113

    Google Scholar 

  • Lim W (1985) Diseases and disorders of pineapples in peninsular Malaysia. MARDI Report 97

    Google Scholar 

  • Liu Z-W, Li H-P, Cheng W, Yang P, Zhang J-B, Gong A-D, Feng Y-N, Fernando WD, Liao Y-C (2012) Enhanced overall resistance to Fusarium seedling blight and Fusarium head blight in transgenic wheat by co-expression of anti-fungal peptides. Eur J Plant Pathol 134(4):721–732

    Article  CAS  Google Scholar 

  • Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS One 7(4):e34775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano R, Hamblin MT, Prochnik S, Jannink J-L (2015) Identification and distribution of the NBS-LRR gene family in the cassava genome. BMC Genomics 16(1):360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyon H (1915) A survey of the pineapple problems. Hawaii Plant Records 13:125–139

    Google Scholar 

  • Marin-Cevada V, Fuentes-Ramirez LE (2016) Pink disease, a review of an asymptomatic bacterial disease in pineapple. Rev Bras Frutic 38 (3)

    Google Scholar 

  • Marín-Cevada V, Vargas V, Juarez M, López V, Zagada G, Hernández S, Cruz A, Caballero-Mellado J, López-Reyes L, Jiménez-Salgado T (2006) Presence of Pantoea citrea, causal agent of pink disease, in pineapple fields in Mexico. Plant Pathol 55(2):294–294

    Article  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54(1):23–61

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell 15(4):809–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang M-L, Chen J, Biggers E (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47(12):1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monosi B, Wisser R, Pennill L, Hulbert S (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109(7):1434–1447

    Article  CAS  PubMed  Google Scholar 

  • Nookaraju A, Agrawal DC (2012) Enhanced tolerance of transgenic grapevines expressing chitinase and β-1, 3-glucanase genes to downy mildew. Plant Cell Tissue Organ Cult 111(1):15–28

    Article  CAS  Google Scholar 

  • Pak J-H, Chung E-S, Shin S-H, Jeon E-H, Kim M-J, Lee H-Y, Jeung J-U, Hyung N-I, Lee J-H, Chung Y-S (2009) Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV. Plant Biotechnol Reports 3(2):147–155

    Article  Google Scholar 

  • Paterson A, Bowers J, Chapman B (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101(26):9903–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paull RE, Rohrbach KG (1985) Symptom development of chilling injury in pineapple fruit. J Am Soc Hortic Sci 110(1):100–105

    Google Scholar 

  • Petty G, Manicom B (1995) Control of the big-headed ant, Pheidole megacephala, in pineapple plantations with the proprietary bait. Amdro Fruits 50(5):343–346

    CAS  Google Scholar 

  • Porter BW, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Gen Genomics 281(6):609–626

    Article  CAS  Google Scholar 

  • Reinhardt D, Cabral J, de Matos A, Junghans D (2010), 'BRS Ajubá' a new pineapple cultivar resistant to fusariosis and adapted to subtropical conditions. In: VI International Symposium on Banana: XXVIII International Horticultural Congress on Science and Horticulture for People, vol 928. pp 75–79

    Google Scholar 

  • Rohrbach KG (1984) Pineapple diseases and pests and their potential for spread. In: Exotic plant quarantine pests & procedures for introduction of plant materials/edited by KG Singh

    Google Scholar 

  • Rohrbach K, Donald S (2003) Diseases of pineapple. In: Diseases of tropical fruit crops. CABI, Cambridge

    Google Scholar 

  • Rohrbach KG, Johnson MW (2002) 9 Pests, diseases and weeds. In: The pineapple: botany, production, and uses, p 203

    Google Scholar 

  • Rohrbach KG, Pfeiffer JB (1976) The interaction of four bacteria causing pink disease of pineapple with several pineapple cultivars. Phytopathology 66(4):396–399

    Article  Google Scholar 

  • Rohrbach K, Schmitt D (1994) Pineapple diseases. Phytophtora heart rot and root rot. In: Compendium of tropical fruit diseases. Am Phytopathol Soc Press, St Paul, MN, pp 49–50

    Google Scholar 

  • Rohrbach KG, Beardsley JW, German TL, Reimer NJ, Sanford WG (1988) Mealybug wilt, mealybugs, and ants of pineapple. Plant Dis 72(7):558–565

    Article  Google Scholar 

  • Rohrbach KG, Christopher D, Hu J, Paull R, Sipes B, Nagai C, Moore P, McPherson M, Atkinson H (1998) Levesley A Management of a multiple goal pineapple genetic engineering program. In: III International Pineapple Symposium, vol 529. pp 111–114

    Google Scholar 

  • Sanewski G, Giles J (1997) Blackheart resistance in three clones of pineapple [Ananas comosus (L.) Merr.] in subtropical Queensland. Anim Prod Sci 37(4):459–461

    Article  Google Scholar 

  • Sether D, Hu J (2001) The impact of pineapple mealybug wilt-associated virus-1 and reduced irrigation on pineapple yield. Australas Plant Pathol 30(1):31–36

    Article  Google Scholar 

  • Sether D, Ullman D, Hu J (1998) Transmission of pineapple mealybug wilt-associated virus by two species of mealybug (Dysmicoccus spp.). Phytopathology 88(11):1224–1230

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Zheng Y, Chen W, Chang T, Ku H-M, Jan F-J (2009) Occurrence and molecular characterization of three pineapple Mealybug wilt-associated viruses in pineapple in Taiwan. Plant Dis 93(2):196–196

    Article  PubMed  Google Scholar 

  • Singh S, Sastry K (1974) Wilt of pineapple-a new virus disease in India. Ind Phytopathol 27(3):298–303

    Google Scholar 

  • Singh A, Kirubakaran SI, Sakthivel N (2007) Heterologous expression of new antifungal chitinase from wheat. Protein Expr Purif 56(1):100–109

    Article  CAS  PubMed  Google Scholar 

  • Sipes B, Schmitt D (1994) Evaluation of pineapple, Ananas comosus, for host-plant resistance and tolerance to Rotylenchulus reniformis and Meloidogyne javanica. Nematropica 24(2):113–121

    Google Scholar 

  • Smith J (1966) Review of the root rot and heart rot problem in pineapple. II. Breeding for resistance. PRI Res Rep 118:50–63

    Google Scholar 

  • Smith L (1983) Cause and development of blackheart in pineapples. In: Tropical Agriculture

    Google Scholar 

  • Sripaoraya S, Marchant R, Power J, Davey M (2001) Herbicide-tolerant transgenic pineapple (Ananas comosus) produced by microprojectile bombardment. Ann Bot 88(4):597–603

    Article  CAS  Google Scholar 

  • Steffens JC, Zabeau M (1994) Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers. Bio/Technology 12:1101

    Article  Google Scholar 

  • Stewart R, Sawyer B, Robinson S (2002) Blackheart development following chilling in fruit of susceptible and resistant pineapple cultivars. Anim Prod Sci 42(2):195–199

    Article  Google Scholar 

  • Taira T, Toma N, Ichi M, Takeuchi M, Ishihara M (2005) Tissue distribution, synthesis stage, and ethylene induction of pineapple (Ananas comosus) chitinases. Biosci Biotechnol Biochem 69(4):852–854

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7(1):56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang H, Bowers JE, Wang X, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci 107(1):472–477

    Article  CAS  PubMed  Google Scholar 

  • Trusov Y, Botella JR (2006) Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.]. J Exp Bot 57(14):3953–3960

    Article  CAS  PubMed  Google Scholar 

  • Van Loon L, Van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var.‘Samsun’and ‘Samsun NN’: II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40(2):199–211

    Article  Google Scholar 

  • Ventura J, Zambolim L, Chaves G (1992) Integrated management system for pineapple Fusarium disease control. In: I International Pineapple Symposium, vol 334. pp 439–454

    Google Scholar 

  • Ventura J, Costa H, Cabral J, de Matos A (2007) 'Vitoria': new pineapple cultivar resistant to fusariosis. In: VI International Pineapple Symposium, vol 822. pp 51–56

    Google Scholar 

  • Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49:507–531

    Article  CAS  PubMed  Google Scholar 

  • Winks C, Glennie J, Lanham T (1984) Progress report: pineapple breeding. Maroochy Horicult Res Station Report 1985(4):175–177

    Google Scholar 

  • Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, Van den Elzen P, Cornelissen B (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3(6):619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabor L, Aragón C, Hernández M, Arencibia A, Lorenzo JC (2008) Biochemical side effects of the herbicide FINALE® on bar gene-containing transgenic pineapple plantlets. Euphytica 164(2):515

    Article  CAS  Google Scholar 

  • Yang S, Gu T, Pan C, Feng Z, Ding J, Hang Y, Chen J-Q, Tian D (2008a) Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet 116(2):165–177

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhang X, Yue J-X, Tian D, Chen J-Q (2008b) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics 280(3):187–198

    Article  CAS  Google Scholar 

  • Zhang X, Liang P, Ming R (2016) Genome-wide identification and characterization of nucleotide-binding site (NBS) resistance genes in pineapple. Trop Plant Biol 9(3):187–199

    Article  CAS  Google Scholar 

  • Zhou Y, Dahler JM, Underhill SJ, Wills RB (2003a) Enzymes associated with blackheart development in pineapple fruit. Food Chem 80(4):565–572

    Article  CAS  Google Scholar 

  • Zhou Y, O'Hare TJ, Jobin-Decor M, Underhill SJ, Wills RB, Graham MW (2003b) Transcriptional regulation of a pineapple polyphenol oxidase gene and its relationship to blackheart. Plant Biotechnol J 1(6):463–478

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Wang Y, Chen J-Q, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271(4):402–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Ming, R. (2018). Genomics of Pineapple Disease-Resistance Genes. In: Ming, R. (eds) Genetics and Genomics of Pineapple. Plant Genetics and Genomics: Crops and Models, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-00614-3_16

Download citation

Publish with us

Policies and ethics