Transposable Elements in the Pineapple Genome

  • Juan Liu
  • Romain Guyot
  • Ray MingEmail author
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 22)


Transportable elements (TEs) account for majority of genomic sequences in most plant genomes. They play vital roles in the structure, function, and evolution of genomes. Pineapple (Ananas comosus L.) is an important fruit crop performing CAM photosynthesis and has a relatively small genome size at 526 Mb. But it contains relative high proportion of TEs. In pineapple genome, TEs constitute 44% of the genome assembly and 69% of the genome after adding 25% of unassembled TEs. LTR (long terminal repeat) retrotransposons in Class I (retrotransposons) are the most abundant TEs in pineapple, accounting for 32% of the genome assembly. Class I TEs tend to enriched in gene-poor regions, while Class II TEs tend to enriched in gene-rich regions. The distribution of LTR retrotransposons among pseudo-molecules varies, ranging from 22.16 to 33.18%. A negative correlation is detected between LTRs copy number and expression levels. In addition, TEs of different families show expression bias in various tissues. The Sira family was most highly expressed in flower and floral tissues. The massive expansion of several TE families affects the genome size rapidly. Del, a family of the Gypsy superfamily, constitute of 60% of LTR retrotransposons. The insertion time suggests that it amplified to very high copy number at about 1.5–2.0 million years ago. In this chapter, we will review the resent discovered TEs in the pineapple genome.


Transportable elements LTR retrotransposons Pineapple Genome evolution Expression level 


  1. Coen ES, Carpenter R, Martin C (1986) Transposable elements generate novel spatial patterns of gene expression in antirrhinum majus. Cell 47:285–296CrossRefGoogle Scholar
  2. D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217CrossRefGoogle Scholar
  3. Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A, Wincker P, Quesneville H, Feuillet C, Choulet F (2014) Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol 15:546CrossRefGoogle Scholar
  4. Fedoroff NV (2013) Plant transposons and genome dynamics in evolutionGoogle Scholar
  5. Flutre T, Duprat E, Feuillet C, Quesneville H (2012) Considering transposable element diversification in de novo annotation approaches. PLoS One 6:e16526CrossRefGoogle Scholar
  6. Grandbastien MA, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380CrossRefGoogle Scholar
  7. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of Rice Involved in Mutations Induced by Tissue Culture. Proc Natl Acad Sci U S A 93:7783–7788CrossRefGoogle Scholar
  8. International Rice Genome Sequencing P (2005) The map-based sequence of the rice genome. Nature 436:793CrossRefGoogle Scholar
  9. Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A 98:8714–8719CrossRefGoogle Scholar
  10. Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975CrossRefGoogle Scholar
  11. Magallón S, Al E (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207:437–453CrossRefGoogle Scholar
  12. Marco A, Marín I (2008) How Athila retrotransposons survive in the Arabidopsis genome. BMC Genomics 9:219CrossRefGoogle Scholar
  13. Mcclintock B (1949) Mutable loci in maize. Proc Natl Acad Sci 36:344–355CrossRefGoogle Scholar
  14. Mcclintock B (1956) Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol 8:58Google Scholar
  15. Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660CrossRefGoogle Scholar
  16. Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien MA (1997) The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol 33:257–266CrossRefGoogle Scholar
  17. Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim WC, Priest HD, Zheng C, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu X, Yang X, Smith JA, Cushman JC, Paull RE, Yu Q (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442CrossRefGoogle Scholar
  18. Murat F, Louis A, Maumus F, Armero A, Cooke R, Quesneville H, Roest CH, Salse J (2016) Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol 17:1–1CrossRefGoogle Scholar
  19. Neumann P, Koblížková A, Navrátilová A, Macas J (2006) Significant expansion of vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047CrossRefGoogle Scholar
  20. Orozco-Arias S, Liu J, Tabares-Soto R, Ceballos D, Silva Domingues D, Garavito A, Ming R, Guyot R (2018) Inpactor, integrated and parallel analyzer and classifier of LTR retrotransposons and its application for pineapple LTR retrotransposons diversity and dynamics. Biology 7:E32CrossRefGoogle Scholar
  21. Park M, Park J, Kim S, Kwon JK, Park HM, Bae IH, Yang TJ, Lee YH, Kang BC, Choi D (2012) Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Plant J 69:1018–1029CrossRefGoogle Scholar
  22. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefGoogle Scholar
  23. Petersonburch BD, Dan N, Voytas DF (2004) Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol 5:1–16Google Scholar
  24. Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262CrossRefGoogle Scholar
  25. Sanmiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45CrossRefGoogle Scholar
  26. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefGoogle Scholar
  27. Schulman AH (2013) Retrotransposon replication in plants. Curr Opin Virol 3:604–614CrossRefGoogle Scholar
  28. Selinger DA, Chandler VL (1999) Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize. Proc Natl Acad Sci U S A 96:15007–15012CrossRefGoogle Scholar
  29. Selinger DA, Lisch D, Chandler VL (1998) The maize regulatory gene B-Peru contains a DNA rearrangement that specifies tissue-specific expression through both positive and negative promoter elements. Genetics 149:1125PubMedPubMedCentralGoogle Scholar
  30. The International Brachypodium I (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763CrossRefGoogle Scholar
  31. Thomson KG, Thomas JE, Dietzgen RG (1998) Retrotransposon-like sequences integrated into the genome of pineapple, Ananas comosus. Plant Mol Biol 38:461–465CrossRefGoogle Scholar
  32. Vogel JP (2016) Genetics and genomics of brachypodium. Springer International Publishing, ChamCrossRefGoogle Scholar
  33. Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081CrossRefGoogle Scholar
  34. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973CrossRefGoogle Scholar
  35. Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722CrossRefGoogle Scholar
  36. Wright DA, Voytas DF (2002) Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res 12:122–131CrossRefGoogle Scholar
  37. Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, Griffiths H, Smith JA, De Paoli HC (2015) A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol 207:491–504CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Institut de recherche pour le développement (IRD)CIRAD, Université de MontpellierMontpellierFrance
  3. 3.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations