Skip to main content

Energy Consideration on the Role of Damping

  • Chapter
  • First Online:
Dynamic Stability of Columns under Nonconservative Forces

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 255))

Abstract

In Sect. 4.3 of the previous chapter, it has been shown that introduction of small internal damping to Beck’s column leads to a considerable reduction in the flutter limit, from \(p_{* } = 20.05\) (for the undamped case) to \(p_{cr} = 10.94\) (for the damped case). This effect is referred to as the destabilizing effect of small damping. This chapter presents an energy-based discussion on the role of internal damping in the dynamics of Beck’s column with damping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fox, C. (1987). An introduction to the calculus of variations. New York: Dover Publications, Inc.

    MATH  Google Scholar 

  2. Lanczos, C. (1986). The variational principles of mechanics. New York: Dover Publications, Inc.

    MATH  Google Scholar 

  3. Cook, R. D., Malkus, D. S., & Plesha, M. E. (1989). Concepts and applications of finite element analysis. New York: Wiley.

    MATH  Google Scholar 

  4. Shames, I. H., & Dym, C. L. (2003). Energy and finite element method in structural mechanics. New York: Taylor & Francis.

    MATH  Google Scholar 

  5. Pedersen, P., & Seyranian, A. P. (1983). Sensitivity analysis for problems of dynamic stability. International Journal of Solids and Structures, 19, 315–335.

    Article  Google Scholar 

  6. Benjamin, T. B. (1961). Dynamics of a system of articulated pipes conveying fluid, I. Theory. Proceedings of the Royal Society of London, A, 261, 457–486.

    MathSciNet  MATH  Google Scholar 

  7. Benjamin, T. B. (1961). Dynamics of a system of articulated pipes conveying fluid, II. Experiments. Proceedings of the Royal Society of London, A, 261, 487–499.

    MathSciNet  MATH  Google Scholar 

  8. Lighthill, M. J. (1978). Waves in fluids. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  9. Lighthill, M. J. (1970). Aquatic animal propulsion of high hydromechanical efficiency. Journal of Fluid Mechanics, 44, 265–301.

    Article  Google Scholar 

  10. Benjamin, T. B. (1960). Effect of a flexible boundary on hydrodynamic stability. Journal of Fluid Mechanics, 9, 513–532.

    Article  MathSciNet  Google Scholar 

  11. Benjamin, T. B. (1963). The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows. Journal of Fluid Mechanics, 16, 436–450.

    Article  Google Scholar 

  12. Crighton, D. G., & Oswell, J. E. (1991). Fluid loading with mean flow, I. Response of an elastic plate to localized excitation. Philosophical Transactions of the Royal Society of London, A, 335, 557–592.

    Article  MathSciNet  Google Scholar 

  13. Landahl, M. T. (1962). On the stability of a laminar incompressive boundary layer over a flexible surface. Journal of Fluid Mechanics, 13, 609–632.

    Article  Google Scholar 

  14. Herrmann, G., & Nemat-Nasser, S. (1967). Energy considerations in the analysis of stability of nonconservative systems. In Herrmann, G. (Ed.), Dynamic stability of structures (pp. 299–308). Oxford: Pergamon Press.

    Google Scholar 

  15. Païdoussis, M. P., & Deksnis, E. B. (1970). Articulated models of cantilevers conveying fluid: The study of paradox. Journal of Mechanical Engineering Sciences, 12, 288–300.

    Article  Google Scholar 

  16. Herrmann, G., & Nemat-Nasser, S. (1965). Energy considerations in the analysis of stability of nonconservative structural systems. Technical Report 65(5). Northwestern University, Evanston, IL.

    Google Scholar 

  17. Langthjem, M. (1994). On the influence of damping in a problem of dynamic stability optimization. Structural Optimization, 7, 227–236.

    Article  Google Scholar 

  18. Nemat-Nasser, S., & Herrmann, G. (1966). On the stability of equilibrium of continuous systems. Ingenieur-Archiv, 35, 17–24.

    Article  Google Scholar 

  19. Semler, C., Alighanbari, H., & Païdoussis, M. P. (1998). A physical explanation of the destabilizing effect of damping. Journal of Applied Mechanics, 65, 642–648.

    Article  Google Scholar 

  20. Langthjem, M. A., Morita, H., Nakamura, T., & Nakano, M. (1994). A flexible rod in annular leakage flow: Influence of turbulence and equilibrium offset, and analysis of instability mechanism. Journal of Fluids and Structures, 22, 617–645.

    Article  Google Scholar 

  21. Langthjem, M. A., & Sugiyama, Y. (1999). Vibration and stability analysis of cantilevered two-pipe system conveying different fluids. Journal of Fluids and Structures, 13, 251–268.

    Article  Google Scholar 

  22. Sugiyama, Y., & Langthjem, M. A. (2007). Physical mechanism of the destabilizing effect of damping in continuous non-conservative dissipative systems. International Journal of Non-Linear Mechanics, 42, 132–145.

    Article  Google Scholar 

  23. Wolfram, S. (1991). Mathematica: A system for doing mathematics by computer. Boston: Addison-Wesley.

    MATH  Google Scholar 

  24. Herrmann, G., & Jong, I.-C. (1965). On the destabilizing effect of damping in nonconservative elastic systems. Journal of Applied Mechanics, 32, 592–597.

    Article  MathSciNet  Google Scholar 

  25. Junger, M. C., & Feit, D. (1993). Sound, structures, and their interaction. New York: Acoustical Society of America.

    MATH  Google Scholar 

  26. Bolotin, V. V., & Zhinzher, N. I. (1969). Effects of damping on stability of elastic systems subjected to nonconservative forces. International Journal of Solids and Structures, 5, 965–989.

    Article  Google Scholar 

  27. Sugiyama, Y., Katayama, K., & Kinoi, S. (1995). Flutter of cantilevers under rocket thrust. Journal of Aerospace Engineering, 8, 9–15.

    Article  Google Scholar 

  28. Sugiyama, Y., Matsuike, J., Ryu, B.-J., Katayama, K., Kinoi, S., & Enomoto, N. (1995). Effect of concentrated mass on the stability of cantilevers under rocket thrust. AIAA Journal, 33, 499–503.

    Article  Google Scholar 

  29. Lighthill, M. J. (1978). Waves in fluids. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  30. Chen, S. S. (1981). Fluid damping for circular cylindrical structures. Nuclear Engineering and Design, 63, 81–100.

    Article  Google Scholar 

  31. Païdoussis, M. P. (1998). Fluid-structure interactions-slender structures and axial flow (Vol. 1). London: Academic Press.

    Google Scholar 

  32. Bishop, R. E. D., & Fawzy, I. (1976). Free and forced oscillation of a vertical tube containing a flowing fluid. Philosophical Transactions of the Royal Society of London, A, 284, 1–47.

    Article  Google Scholar 

  33. Drazin, P. G., & Reid, W. H. (1981). Hydrodynamic stability. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  34. Roorda, J., & Nemat-Nasser, S. (1967). An energy method for stability analysis of nonlinear, nonconservative systems. AIAA Journal, 5, 1262–1268.

    Article  Google Scholar 

  35. Bolotin, V. V., Grishko, A. A., & Panov, M Yu. (2002). Effect of damping on the postcritical behavior of autonomous non-conservative systems. International Journal of Nonlinear Mechanics, 37, 1163–1179.

    Article  Google Scholar 

  36. Kounadis, A. N. (1997). Non-potential dissipative systems exhibiting periodic attractors in regions of divergence. Chaos, Solitons & Fractals, 8, 583–612.

    Article  MathSciNet  Google Scholar 

  37. Kounadis, A. N. (2006). Hamiltonian weakly damped autonomous systems exhibiting periodic attractors. Zeitschrift für Angewandte Mathematik und Physik, 57, 324–350.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Sugiyama .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sugiyama, Y., Langthjem, M.A., Katayama, K. (2019). Energy Consideration on the Role of Damping. In: Dynamic Stability of Columns under Nonconservative Forces. Solid Mechanics and Its Applications, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-00572-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00572-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00571-9

  • Online ISBN: 978-3-030-00572-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics