Skip to main content

Columns under a Follower Force

  • Chapter
  • First Online:
Dynamic Stability of Columns under Nonconservative Forces

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 255))

  • 498 Accesses

Abstract

An elastic cantilevered beam subjected to a follower force, the so-called Beck’s column , is an ideal/classical structural model in the theory of nonconservative stability problems. The stability of columns associated with follower forces is a relatively new topic in the field of structural stability, at least in comparison with the part dealing with conservative forces. This chapter discusses the basic aspects of a column under a follower force, its positive and negative features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolotin, V. V. (1963). Nonconservative problems of the theory of elastic stability. New York: Pergamon Press.

    MATH  Google Scholar 

  2. Beck, M. (1952). Die Knicklast des einseitig eingespannten, tangential gedrückten Stabes. Zeitschrift für Angewandte Mathematik und Physik, 3, 225–228.

    Article  Google Scholar 

  3. Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability. New York: McGraw-Hill (New York: Dover Publications, Inc., 2009).

    Google Scholar 

  4. Sugiyama, Y., Katayama, T., & Sekiya, T. (1970). Studies on nonconservative problems of instability of columns by difference method. In Proceedings of the 19th Japan National Congress for Applied Mechanics 1969 (pp. 23–31). Tokyo: The University of Tokyo Press.

    Google Scholar 

  5. Sugiyama, Y., Fujiwara, N., & Sekiya, T. (1969). Studies on nonconservative problems of instability of columns by means of analog computer. In Proceedings of the 18th Japan National Congress for Applied Mechanics 1968 (pp. 113–126). Tokyo: The University of Tokyo Press.

    Google Scholar 

  6. Leipholz, H. (1970). Stability theory. New York: Academic Press.

    MATH  Google Scholar 

  7. Ziegler, H. (1968). Principles of structural stability. Massachusetts: Blaisdell Publishing Co.

    Google Scholar 

  8. Leipholz, H. (1980). Stability of elastic systems. Alphen aan den Rijn: Sijthoff & Noordhoff.

    MATH  Google Scholar 

  9. Langthjem, M. A., & Sugiyama, Y. (2000). Dynamic stability of columns subjected to follower loads: A survey. Journal of Sound and Vibration, 238(5), 809–851.

    Article  Google Scholar 

  10. Elishakoff, I. (2005). Controversy associated with the so-called follower forces. Applied Mechanics Review, 58, 117–142.

    Article  Google Scholar 

  11. Datta, P. K. (2011). Aeroelastic behaviour of aerospace structural elements with follower force: A review. International Journal of Aeronautical and Space Sciences, Korean Society of Aeronautical and Space Sciences, 12(2), 134–148.

    Article  Google Scholar 

  12. Venkateswara Rao, G., & Singh, G. (2001). Revisit to the stability of a uniform cantilever column subjected to Euler and Beck loads—Effect of realistic follower forces. Indian Journal of Engineering and Materials Sciences, 8, 123–128.

    Google Scholar 

  13. Koiter, W. T. (1996). Unrealistic follower forces. Journal of Sound and Vibration, 194(4), 636–638.

    Article  Google Scholar 

  14. Sugiyama, Y., Langthjem, M. A., & Ryu, B.-J. (1999). Realistic follower forces. Journal of Sound and Vibration, 225(4), 779–782.

    Article  Google Scholar 

  15. Sugiyama, Y., Ryu, S.-U., & Langthjem, M. A. (2002). Beck’s column as the ugly duckling. Journal of Sound and Vibration, 254(2), 407–410.

    Article  Google Scholar 

  16. Ziegler, H. (1952). Die Stabilitätskrierien der Elastomechnik. Ingeniur-Archiv, 20, 45–56.

    Google Scholar 

  17. Farrar, D. J. (1956). Structures. The Aeronautical Journal, the Royal Aeronautical Society, 60, 712–720.

    Article  Google Scholar 

  18. Feodosiev, V. I. (1965). On a problem of stability. Prikladnaya Mathematica i Mekhanika, 29, 391–392. (in Russian).

    Google Scholar 

  19. Beal, T. R. (1965). Dynamic stability of a flexible missile under the constant and pulsating thrust. AIAA Journal, 3, 486–494.

    Article  Google Scholar 

  20. Wu, J. J. (1975). On the stability of a beam under axial thrust subjected to directional control. Journal of Sound and Vibration, 42, 45–52.

    Article  Google Scholar 

  21. Wu, J. J. (1976). On missile stability. Journal of Sound and Vibration, 49, 141–147.

    Article  Google Scholar 

  22. Wu, L., Xie, C., & Yang, C. (2012). Aeroelastic stability of a slender missile with constant thrust. Procedia Engineering, 31, 128–135.

    Article  Google Scholar 

  23. Ohshima, T., & Sugiyama, Y. (2003). Dynamic stability of free-free beam subjected to end rocket thrust and carrying a heavy payload at its nose. In Proceedings of 2003 International Conference on Physics and Control (PhysCon 2003) (Vol. 4, pp. 1115–1120). St. Petersburg.

    Google Scholar 

  24. Chae, S. (2004). Effect of follower forces on aeroelastic stability of flexible structures, (Doctoral Thesis). School of Aerospace Engineering, Georgia Institute of Technology, ProQuest Information and Learning Company, Ann Arbor.

    Google Scholar 

  25. Nishiwaki, M. (1993). Generalized theory of brake noise. Proceedings of the Institution of Mechanical Engineers, 207, 195–202.

    Article  Google Scholar 

  26. Mottershead, J. E., & Chan, S. N. (1995). Flutter instability of circular discs with frictional follower loads. Journal of Vibration and Acoustics, 117, 161–163.

    Article  Google Scholar 

  27. Bigoni, D., & Noselli, G. (2011). Experimental evidence of flutter and divergence instabilities induced by dry friction. Journal of the Mechanics and Physics of Solids, 59(10), 2208–2226.

    Article  Google Scholar 

  28. Kurnik, W., Przybylowicz, P. M., & Bogacz, W. (2018). Bigoni and Noseli’s experiment: Is it evidence for flutter in the Ziegler column? Archive of Applied Mechanics, 88, 203–213.

    Article  Google Scholar 

  29. Fazelzadeh, S. A., Karimi-Nobandegani, A., & Mardanpour, P. (2017). Dynamic stability of pretwisted cantilever beams subjected to distributed follower force. AIAA Journal, 55(5), 955–964.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Sugiyama .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sugiyama, Y., Langthjem, M.A., Katayama, K. (2019). Columns under a Follower Force. In: Dynamic Stability of Columns under Nonconservative Forces. Solid Mechanics and Its Applications, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-00572-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00572-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00571-9

  • Online ISBN: 978-3-030-00572-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics